
VTune™ Performance Analyzer
Essentials

The complete book is available from shopintel.com at a special discount for
VTune™ analyzer users. Click the book cover and enter the promotional code
“vta2006” at the shopintel.com checkout.

VTune™ Performance Analyzer Essentials
Measurement and Tuning Techniques for Software Developers

by James Reinders, Published March 2005
Part Number: ISBN 0-9743649-5-9
Recommended Price: $59.95

A real challenge in modern software environments is the ability to properly identify performance bottlenecks.
The Intel® VTune™ Performance Analyzer helps locate and remove software performance bottlenecks by
collecting, analyzing, and displaying performance data from the system-wide level down to the source level.
VTune Performance Analyzer Essentials is written for software application developers, software architects,
quality assurance testers, and system integrators who wish to take the guesswork out of software tuning.
Much like diagnostic computers for tuning engines, or flashlights for seeing plumbing in the dark reaches of
your basement, the tools within the VTune analyzer "illuminate" your system and everything running on it.
This book is a guide to "turning on the lights" and understanding what you see.

Included are a wide range of examples and step-by-step techniques that illustrate the VTune analyzer in
action.

Highlights Include:

 Hotspot hunting and automatic analysis
 Software tuning guidelines for different languages, such as C++, Fortran, Java, Microsoft Visual

Basic, and Microsoft C#
 Automation of analysis tasks
 Remote analysis techniques for "headless" servers, PDAs, and cell phones
 How to analyze multithreaded programs

A special companion Web site to this book contains all code examples and bonus material, plus trial versions
of Intel software development products including the VTune Performance Analyzer.

James Reinders is a senior engineer who has spent the past 16 years at Intel Corporation working on projects such as the
world's first TeraFLOP supercomputer (ASCI Red) and on the compilers and architectures for the Pentium® Pro, Pentium®
II, Itanium®, Pentium® 4, and iWarp processors. James is currently the director of business development and marketing
for Intel's Software Products Division and serves as the division's chief product evangelist.

Intel Press books are essential for computer product Developers and IT professionals
because they are timed with industry roadmaps. Our books are a simple way to learn from
the experts about the latest technologies from Intel.
Visit our website at www.intel.com/intelpress

http://www.shop-intel.com/shop/product.asp?pid=SIBK3576
http://www.intel.com/intelpress
http://www.intel.com/intelpress

INTEL
PRESS

VTune™ Performance
Analyzer Essentials
Measurement and Tuning Techniques
for Software Developers

James Reinders

Copyright © 2005 Intel Corporation. All rights reserved.

ISBN 0-9743649-5-9

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission
should be addressed to the Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue,
JF3-330, Hillsboro, OR 97124-5961. E-Mail: intelpress@intel.com.

Celeron, Intel, Intel Centrino, Intel logo, Intel NetBurst, Intel Xeon, Intel XScale, Intel
SpeedStep, Itanium, MMX, Pentium, and VTune are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.
† Other names and brands may be claimed as the property of others.

Example 4.1: Time-Based Sampling Using the Graphical Interface

Follow these steps to perform time-based sampling from the graphical
interface.

Step-by-Step Procedure
1. Double-click the VTune Performance Analyzer icon to start

the analyzer.

2. Click the Create New Project icon.

3. Click Sampling Wizard and select OK.

4. Select Windows/Windows CE/Linux Profiling and click Next.

These pages were excerpted from Chapter 4 of VTune™ Performance Analyzer Essentials
by James Reinders.

In this section of the book, the author walks through an example on how to use the
graphical user interface to find the hotspots in your application down to the lines of source
code. More examples and detail on how sampling is implemented are contained later in the
same chapter as this excerpt.

Visit Intel Press on the web at www.intel.com/intelpress to learn more about this book.

Chapter 4: Hotspot Hunting 101: Sampling 75

http://www.intel.com/intelpress/

76 VTune™ Performance Analyzer Essentials

5. In the Application To Launch text box, type the path:

C:\examples\ch4\windows\prog0401.exe
(Linux users: examples/ch4/linux/prog0401)

or whatever executable file you want to sample, possibly:
C:\WINNT\system32\notepad.exe or /bin/ls

6. In the Command Line Arguments text box, type:

input0402.txt 1000

for prog0401. For other applications, either type the options you
want or leave it blank if you’re not sure.

7. Select the Modify default configuration when done with
wizard checkbox and click Finish.

The Advanced Activity Configuration dialog box appears.

8. Click Configure… in the middle of the screen for the Data Col-
lector called Sampling, which is already selected.

The Configure Sampling window appears.

9. Select Time-based sampling (TBS) and click OK to return to
the Advanced Activity Configuration dialog box.

10. Click OK.

Once prog0401 finishes executing, the VTune analyzer displays a
screen showing the applications detected as running while Sam-
pling took place. If you are running your own application or
Notepad, you are probably running with a time limit, because this
is the default setting. If so, either close that program or click the
Stop Activity icon on the toolbar (Figure 4.3) in order to see the
Sampling results screen.

Figure 4.3 The Stop Activity Icon on the Toolbar

Chapter 4: Hotspot Hunting 101: Sampling 77

Table 4.2 shows some important toolbar icons for navigating
among Sampling data views.

Table 4.2 Important Icons for Navigating Sampling Views (Windows)

Name Icon Description

Tabs See
description.

Click tabs (usually positioned at the bottom of the screen) to
switch between open data views:

Previous
(Standard
Toolbar)

Displays the previous open data view window. For example,
if you drilled down from Module to Hotspot view, clicking
Previous would take you back to Module view, much like
the Back button in an Internet browser.

Next (Standard
Toolbar)

Displays the next open data view window. For example, if
three views are open:

clicking Next would take you to the next view in the series,
much like the Forward button in an Internet browser.

Drill Down

Drills down to a lower level in the data view hierarchy by
opening the selected item (such as a process, thread,
module, or function) in a new window.

Processes

Displays all the processes that ran on your system when
Sampling data collection took place.

Threads

Displays the threads for the selected process(es).1

Modules

Displays the modules for the selected thread(s).1

Hotspots

Displays the hotspots for the selected module(s) grouped by
function, relative virtual address, source file, or class. 1

Source

Displays the source code for the selected hotspot(s). 1

Which Application Took the Most Time?

Looking at Figure 4.4, which application took the most time? Notice
that it was not prog0401, at least not on the system used to prepare this
example.

1 Hold down the Ctrl or Shift key to make multiple selections.

78 VTune™ Performance Analyzer Essentials

Figure 4.4 Sampling Results for prog0401 with Virus Protection Software

Instead, the OS (hal.dll and ntoskrnl) plus the virus protection
software (MCSCAN32.DLL) appear to be the culprit. Linux users, you will
see shortly, have a similar issue with Java on their system. This may seem
frustrating for the purposes of this example, but it illustrates the power
of the VTune analyzer. The analyzer is telling you that, if you must make
this particular system run faster, the biggest problems with this particular
example are the OS and the virus protection software (or perhaps Java on
Linux) that analyzes prog0401.exe before it ever runs.

If you can eliminate that software, you can speed up system execu-
tion more than if you worked on prog0401 all day long. Take a look at
the results of running the prog0401 program again after disabling the vi-
rus protection software; in other words, rerun Example 4.1. The screen
shown in Figure 4.5 tells the tale; MCSCAN32.DLL has disappeared,
hal.dll is now taking less than half the execution time, and ntoskrnl
is taking almost no time.

Chapter 4: Hotspot Hunting 101: Sampling 79

Figure 1.5 Sampling Results for prog0401 Without Virus Protection
Software

You can drill down to the function level next to see which functions
in prog0401 took the longest to run. To do this, simply double-click on
the dark horizontal bar to the right of the filename prog0401.exe. Be-
fore you click, while your mouse is pointing at the dark bar, you might
notice that the analyzer displays a small box with the information Timer
32,000. The VTune analyzer is showing you the number of timer inter-
rupts that occurred while prog0401 was the active process.

After drilling down you see the view shown in Figure 4.6, which
clearly shows that the top three functions in terms of time spent are
fgets and toupper (parts of the C library), plus sort and read, which
are in the prog0401 code. By mousing over the dark bar for the read
function, you can see the message Timer 10,000. This means that
prog0401 spent about 31 percent of its run time in the read function
(10,000/32,000).

80 VTune™ Performance Analyzer Essentials

Figure 4.6 Functions View of prog0401

Linux users may not have virus protection software running, but they
will see that Java is consuming a lot of resources. The Eclipse user inter-
face uses Java, so it is running on the system even though the example
program itself has no Java code. The resulting analysis shown in Figure
4.7 has the example program not even ranking in the first screenfull as it
was too trivial a task on the system. The VTune analyzer is offering its
analysis as to what is really happening on the computer; it is up to you to
use or ignore the wealth of information as it suits your purposes.

Chapter 4: Hotspot Hunting 101: Sampling 81

Figure 4.7 Sampling Results for prog0401 on Linux with Java Dominating

Drilling Down to the Source

You can take your analysis of the prog0401 program one step further by
drilling down to the source code to look for hotspots at the individual-line
level. Simply double-click on any horizontal bar next to the read function
and the analyzer displays the source code. If a dialog box pops up telling
you that source code is not available, you have the option of looking at as-
sembly language, telling VTune analyzer the directory with the source
code in case it is located in an unusual place, or revisiting the instructions
in the earlier section entitled “Before You Begin Sampling,” that explain
how to compile your program so you can view the source code.

82 VTune™ Performance Analyzer Essentials

Figure 4.8 shows the Source Code view of the prog0401 program.
Mouse over the column heading for Timer. Notice that the analyzer
shows information about this column. Right-click on the column heading
and take note of the many options. Selecting the What’s This Column?
option is a very powerful way to see the VTune analyzer’s built-in docu-
mentation on this event. Another important option is View Events As,
which controls the numbers shown in the column; the default view is
Sample Counts. Since VTune analyzer Sampling works by interrupting
your program occasionally, this option shows you how many actual in-
terrupts occurred. In the prog0401 example, the Timer occurred 10
times (7+3) in the for loop in the read routine. Seven of these hap-
pened to land on line 37 of the program, and three on line 45 (not
shown). You can choose to change the column to display % of Module,
which is often more meaningful for users who prefer to look at perform-
ance data in terms of percentages, rather than sample counts.

Figure 4.8 Source Code View of prog0401

 Blocked Time on a Thread/Function Basis

Of special interest is time spent waiting because a thread is blocked from
execution. Call Graph can show this information, which can be quite
valuable in fine-tuning an application through better synchronization.

Does My System Show Wait Time?

Certain fields related to Wait Times may always display as zero on your
computer, depending on your operating system. Collection of exact Wait
Time information is not supported when running on a single processor.
This feature is exclusively available on multiprocessors or processors
with Hyper-Threading Technology. If your computer does show nonzero
Wait Times, be aware that:

■ Self-Time, the time spent inside a function excluding its children,
does include Wait Time during which the thread is blocked (sus-
pended).

■ Self Wait Time shows time spent inside a function while its
thread is blocked.

■ Total Wait Time shows time spent in a function including its
children during which the thread is blocked.

Why Do Sampling and Call Graph Have Different Hotspots?

If you collect the time for a hotspot function using Sampling and then
collect the time for that same function using Call Graph, the two times
may not match. Sampling, whether event-based or time-based, does not
include Wait Time during which the thread is suspended waiting for an-
other thread to complete, whereas function Self-Time in Call Graph does
include Wait Time. If you calculate non-blocked Self-Time by subtracting
Self Wait Time from Self-Time, the hotspots for both Sampling and Call
Graph data collectors should be the same.

These pages were excerpted from Chapter 5 of VTune™ Performance Analyzer Essentials
by James Reinders.

In this section of the book, the author explains key concepts of the Call Graph features in
the VTune analyzer: wait time, advice in using call graph vs. sampling to find hotspots, and
an explanation of how Intel’s tool actually implements Call Graph analysis.

Visit Intel Press on the web at www.intel.com/intelpress to learn more about this book.

http://www.intel.com/intelpress/

168 VTune™ Performance Analyzer Essentials

Finding High-level Inefficiencies Related to Hotspots

Call Graph can help you understand where and why hotspot func-
tions are being called. Look for redundant (wasted) work. For exam-
ple, you may find that a hotspot function is being called multiple
times to perform the same calculation. In this case, you could modify
the code so that the hotspot routine is only called once and the re-
sults are stored.

Use Call Graph’s list of frequently called functions, and note the
number of times functions are called and the amount of time spent in
each function. Look for measurements that do not make sense given
your understanding of how the application works. When you see
these anomalies, track them down to understand what is happening.
Often anomalies are caused by undetected bugs that may be decreas-
ing performance.

 Call Graph Usage Tips

Call Graph analysis is used to get an algorithmic or high level look at the
program, whereas sampling is best used when you want to analyze a par-
ticularly dominant hotspot in more detail, or when you want to tune the
application more precisely for the CPU architecture. Often Call Graph
analysis can be useful when the Sampling profile is “flat,” when no single
hotspot is dominant. Sampling analysis was covered in Chapter 4.

When initially using the VTune analyzer, you should run Sampling
first and see whether a hotspot is dominant. If so, drill down to source to
analyze it in more detail. If not, it is time for Call Graph analysis. Often,
data-processing applications are better suited for Call Graph analysis than
programs that employ loop-based calculation, since it is less likely that
the data processing applications are going to have only a small number of
significant hotspots. In such cases, after first using VTune analyzer to ex-
haust tuning based on Sampling analysis, you would generally rely on Call
Graph analysis for your primary tuning methodology with occasional use
of sampling to make sure that new “low-hanging fruit” has not emerged.

Chapter 5: Hotspot Tuning 102: Call Graph 169

The general usage model for Call Graph analysis starts by gathering

the data and sorting the resulting results by Self Time to find the function
that took the longest time. Double-click on it to make it the central node
of the graph. Looking at the immediate call environment around that
function is generally the next useful thing to do, so you should click on
the Call List tab in the lower right corner and get the many details on all
the callers and callees of that function. You can then double-click on any
of the callers and callees in the Call List display and make them the cen-
tral node (or focus function, as VTune analyzer calls it) and you can navi-
gate up and down the call path for the details of the functions in the
immediate vicinity of the function hotspot.

Highlighting is a feature worth exploring. On the right side of the
middle icon row, you can choose to highlight certain types of functions.
Highlighting Max Path to Function can help in call graphs that are com-
plex. Sometimes it is also interesting to highlight functions with source
or recursive functions. It is interesting to highlight .NET or Java methods
so you can see which functions are native and which are not. This is of-
ten useful even when tuning pure managed code because there is usually
unmanaged code in the run time or other library functions.

Windowing in on portions of your program is another feature worth
exploring. If you right-click in the display portion of the graph and select
Overview, you see the complete call graph with the currently displayed
portioned highlighted. You can scroll either one to navigate through the
graph.

The overhead of using Call Graph analysis can be a concern for users,
especially if a lot of instrumentation is needed for the whole program but
you know you do not need a full program analysis. You can go to Con-
figure → Modify and select which DLLs/SharedObjects you do or do
not want to be instrumented to make the instrumented program run
faster. Defaults can be set by clicking on Advanced, and you can even
select individual functions to be instrumented or not. In this manner, you
can control the amount of instrumentation and data results that are gen-
erated. This method can be particularly useful for larger applications.

Always start with the methodology discussed in the section “Learning
to Fish: A Tuning Methodology” in Chapter 1. If you do not start with the
big picture, you may spend unproductive time tuning to address small is-
sues while missing the big picture.

170 VTune™ Performance Analyzer Essentials

 How Call Graph Analysis Works

Call Graph analysis works by gathering performance data for your appli-
cation using a technique known as binary instrumentation, which is the
process of injecting code into a copy of each binary module. On Micro-
soft Windows operating systems, these modules usually have the.exe or
.dll filename extension. Instrumentation modifies a compiled program
by adding data collection routines. When the modified program exe-
cutes, the VTune analyzer calls these collection routines at specific exe-
cution points to dynamically record run-time performance information
such as function timing and function entry and exit points. It uses this
data, based on time rather than events, to determine program flow, criti-
cal functions, and call sequences.

At run time when performing Call Graph data collection, the VTune
analyzer automatically instruments all Ring 3 application-level modules
used by your application. As noted earlier, it cannot instrument Ring 0
kernel and driver modules. If your application dynamically loads libraries;
that is, if it calls LoadLibrary instead of linking to stub libraries, Call
Graph intercepts the module loads and automatically instrument the
modules.

Call Graph places all these instrumented modules in a cache direc-
tory. When the application runs, its modules load from this directory;
however, the application runs in the working directory specified by the
user. Call Graph does not modify any of the original modules unless you
specifically request this in the advanced configuration options.

For Java and .NET applications, Call Graph profiling uses the Java Vir-
tual Machine Profiling Interface (JVMPI) and the .NET Profiling API, re-
spectively, to collect performance data for managed code. By using
instrumentation and the profiling APIs together, Call Graph can provide
mixed-mode performance data for both Java and .NET. Mixed-mode pro-
filing allows you to see how your managed code calls result in unman-
aged code calls; however, if you are only interested in Java and .NET
method calls, you can use pure mode profiling.

Call Graph uses debug and base relocation information to instrument
your application’s modules. It uses the debug information to locate func-
tions in the modules. Without this information, only the exported sym-
bols are visible and only those visible functions can be instrumented,
thus limiting the Call Graph analysis. Call graph uses base relocation in-
formation to help understand the relationships between different pieces
of code in a module. Under Microsoft Windows, .dll files contain base

Chapter 5: Hotspot Tuning 102: Call Graph 171

relocation information by default, but.exe files do not unless you spe-
cifically link them with the fixed:no option. Under Linux, all executa-
bles contain this information unless you explicitly remove it with an
option such as --strip-unneeded, resulting in what is commonly called
a stripped binary or image.

Since instrumentation happens automatically, you do not need to re-
compile before using the Call Graph feature, although you may need to
relink as noted earlier. Instrumentation does not change program func-
tionality; however, it does slow down performance since it adds over-
head. You can take steps during configuration to minimize this overhead,
as you will see.

