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Abstract— A gradient system with discontinuous righthand
side that solves an underdetermined system of linear equations
in the L1 norm is presented. An upper bound estimate for
finite time convergence to a solution set of the system of linear
equations is shown by means of the Persidskii form of the
gradient system and the corresponding non-smooth diagonal
type Lyapunov function. This class of systems can be interpreted
as a recurrent neural network and an application devoted to
solving least squares support vector machines (LS-SVM) is used
as an example.

I. INTRODUCTION

This paper proposes the use of a gradient dynamical system
to solve underdetermined systems of linear equations in the
L1 norm. The system of linear equations is associated to an
unconstrained convex optimization problem, which has the
same solution set as the linear system. The unconstrained
optimization problem, in turn is mapped into a gradient system
with a discontinuous righthand side, which can be considered
as a neural network with discontinuous activation functions
[1]. The advantage of using this class of gradient systems is
that convergence to the solution set of the system of linear
equations occurs in finite time, and an upper bound for the
latter is easily obtained. In addition, hardware implementation
of this class of systems is simple.

Gradient systems were used to solve optimization problems
for the first time in [2], where a method for solving linear
programming problems on an analog computer is presented.
Since then, this approach has been widely used [3]–[7].

Convergence analysis is performed by means of a Persidskii
form of the gradient system in conjunction with a diagonal
type Lyapunov function [8], [9]. The approach used in the
present paper has been already used in [10], [11], where
Persidskii systems, together with the associated diagonal type
Lyapunov functions were used to derive convergence con-
ditions of discontinuous gradient systems that solve linear
programming problems and in [12], where a class of Persidskii
systems with discontinuous righthand sides is analysed.

This research was partially financed by Project Nos 140811/2002-8,
551863/2002-1, 471262/03-0 of CNPq and also by the agencies CAPES and
FAPERJ.

* Corresponding author. Tel.: +55-21-2562-8080; fax: +55-21-2562-8081.
E-mail addresses: lvalente@coep.ufrj.br (L. V. Ferreira); euge-

nius@nacad.ufrj.br (E. Kaszkurewicz); amit@nacad.ufrj.br (A. Bhaya).
Department of Electrical Engineering, NACAD–COPPE / Federal Uni-

versity of Rio de Janeiro. P.O Box 68504, 21945-970, Rio de Janeiro, RJ,
BRAZIL

The proposed gradient dynamical system can be solved
using standard ODE software and this could be an advan-
tage, when the number of unknowns is large. Furthermore,
implementations of these standard ODE methods on parallel
computers could be used, in order to make it possible to deal
with large datasets. In addition, gradient dynamical systems
can be implemented as an analog circuit using only resistors,
amplifiers and switches, which is appropriate for real time
processing using VLSI technology [1].

The dynamical system proposed in the present paper is
suitable for solving classification problems using least squares
support vector machines (LS-SVMs). Support vector machines
(SVMs) [13] are a powerful tool to approach several classes
of problems, such as pattern classification. Modifications to
the original approach have been proposed, such as the ν-
SVM model [14] and the LS-SVM model [15]. The latter
model is particularly appropriate for the technique proposed
in the present paper, since it is modeled as a system of linear
equations. For a detailed presentation of LS-SVM see [15].

II. MATHEMATICAL FORMULATION OF THE PROBLEM

In the text that follows, matrices and vectors are denoted
by boldface capital and lower case letters, such as A and
b, respectively. Scalars are represented by italic lower case
letters, such as x, and sets are represented by capital Greek
letters such as ∆. The functions f : R

n → R
n represent diago-

nal type functions, defined as f(x) := (f1(x1), . . . , fn(xn))T .
In the present paper we are interested in solving systems of
algebraic linear equations of the form:

Ax = b, (1)

where A ∈ R
m×n has full row rank, m ≤ n, x ∈ R

n and
b ∈ R

m.
The assumption rank(A) = m ensures that the system (1)

admits at least one solution. The least absolute deviation or
L1 approach to solving the system of linear equations (1) is
to solve the following unconstrained optimization problem:

Minimize E(x) = ‖r(x)‖1, x ∈ R
n, (2)

where r(x) := Ax − b, and ‖ · ‖1 denotes the L1 norm of
the argument. In the context of neural networks, the objective
function E is referred to as a computational energy function.

Let ri : R
n → R be the components of vector r. The set

∆ := {x : r(x) = 0} is defined as:

∆ =

m
⋂

i=1

∆i; ∆i := {x : ri(x) = 0}, (3)



The minimum of the energy function E in (2) is zero,
consequently, a solution of problem (2) is a vector x∗ ∈ R

n

such that x∗ ∈ ∆. Notice that E is convex as a function of
r and its unique minimizer is the zero vector r∗ = 0. The
optimization problem (2) is solved in the present paper by
steepest descent, which gives a gradient system of the form:

ẋ = −M∇E(x), (4)

where M = diag(µ1, . . . , µm), µi > 0 for all i, is a positive
diagonal matrix, and in the context of neural networks is
referred to as a learning matrix, which is used to improve
convergence speed [1]. For E as in (2), the gradient system
(4) is:

ẋ = −MAT sgn(r), (5)

where sgn(r), for a vector r = (ri, . . . , rm), is defined as
(sgn(r1), . . . , sgn(rm))T , such that for all i:

sgn(ri)











= 1, if ri > 0

∈ [−1, 1], if ri = 0

= −1, if ri < 0

Notice that the function E(x) in (2) is nondifferentiable
at each ∆i, leading to the discontinuous righthand side of
(5). The solutions of (5) are considered in the sense of
Filippov [16], and the sets ∆i are referred to as surfaces of
discontinuity. This class of Persidskii systems is analysed in
[12] and [17], where the results of [12] are extended to a
more general class of Persidskii systems with discontinuous
righthand sides.

According to Filippov’s theory, when the trajectories of
(5) are not confined to any surface of discontinuity, the
usual definition of solutions of differential equations holds.
Otherwise, a solution of (5) is an absolutely continuous vector
function x(t), defined in an interval I, such that for almost all
t in I the differential inclusion ẋ ∈ −∂E(x) is satisfied. The
set ∂E(x) is the subdifferential of E at x and each element
of this set is a subgradient of E at x. If E is differentiable at
x, then ∂E(x) has a single element, which is the gradient of
E at x. Further details and properties of subdifferentials and
subgradients of convex functions can be found, for instance,
in [18], [19].

If the trajectories of (5) are confined to some surface of
discontinuity ∆i, this motion is said to be a sliding motion or,
equivalently, the system is said to be in sliding mode. This is
equivalent to saying that the motion occurs in the hyperplane
tangent to the surface of discontinuity. Further details about
sliding modes can be found in [20], [21].

III. CONVERGENCE ANALYSIS

Convergence analysis is performed using a Persidskii form
of the gradient system (5) in conjunction with the correspond-
ing candidate diagonal type Lyapunov function. The Persidskii
form of (5) is obtained by premultiplying (5) by the matrix
A. Observe that since ṙ = Aẋ, from (5) we get:

ṙ = −A M AT sgn(r). (6)

Let
√

M = diag(
√

µ1, . . . ,
√

µm), notice that the righthand
side of (6) can be written as −A

√
M

√
M AT sgn(r). Using

this notation, we can prove the following proposition.
Proposition 1: The Persidskii system (6) is equivalent to

the original gradient system (5), in the sense that ṙ ≡ 0 iff
ẋ ≡ 0.

Proof: If ẋ ≡ 0, it is immediate that ṙ ≡ 0. On the other
hand, if ṙ ≡ 0 then the vector

√
M∇E =

√
MAT sgn(r) be-

longs to the null space N (A
√

M) of matrix A
√

M, however√
M∇E is a vector in the row space R(

√
MAT ) of A

√
M.

Since N (A
√

M) ⊥ R(
√

MAT ), the only possible solution
for ṙ ≡ 0 is

√
M∇E ≡ 0 and, consequently ẋ ≡ 0.

Proposition 1 is necessary since it ensures that the con-
vergence results derived for the Persidskii system (6) also
hold for the original gradient system (5). Since system (6)
has a discontinuous righthand side, we choose the following
nonsmooth candidate diagonal type Lyapunov function [12]:

V (r) =
m
∑

i=1

∫ ri

0

sgn(τ) dτ. (7)

Observe that i) V (r) > 0 for r 6= 0; ii) V (r) = 0 if and
only if r = 0. The time derivative of V along the trajectories
of (6) is given by V̇ = ∇V T ṙ, i.e.,

V̇ (r) = −sgnT (r)A M AT sgn(r). (8)

Notice that since A has full row rank and M is positive
definite, then A M AT is also positive definite. Consequently,
V̇ ≡ 0 if and only if sgn(r) ≡ 0 implying ṙ ≡ 0 and, from
Proposition 1, ẋ ≡ 0.

Theorem 1: The trajectories of system (5) converge, from
any initial condition, to the solution set of the system of linear
equations (1) in finite time and remain in this set thereafter.
Moreover, the convergence time tf satisfies the bound tf ≤
(V (r0)/λmin(AMAT )), where r0 := r(x0).

Proof: Consider system (6), the time derivative (8) of (7)
and the partition of the set ∆, defined in (3). Considering the
solutions of (6) in the sense of Filippov, two situations must be
considered– first, when the trajectories have not reached any
∆i and second, when the trajectories have already reached
some set ∆i. The aim is to show that in both situations there
exist a scalar ε > 0, such that V̇ ≤ −ε and, finally to show
that ∆ is an invariant set.

i) x(t) /∈ ∆i, for every i. In this case the trajectories are not
confined to any surface of discontinuity and the solutions
of (6) are considered in the usual sense. Since A has
full row rank and M is a positive diagonal matrix, then
the matrix AMAT is positive definite, and using the
Rayleigh principle and the fact that ‖sgn(r)‖2 = m2 ≥ 1
for ri 6= 0, we can write:

V̇ (r) ≤ −λmin(AMAT )m2 ≤ −λmin(AMAT ), (9)

where λmin(AAT ) > 0 is the smallest eigenvalue of
AAT .

ii) x(t) ∈ ∆i, for some i and almost all t in an interval I. In
this case the trajectories are confined to an intersection
of k sets ∆i, k < m, resulting in a sliding motion in
this intersection. Thus, the vectors e that discribe this



motion are subgradients of E at x, i.e., ṙ = −AMe, e ∈
∂E(x), where e = AT s and s = (s1, . . . , sm)T , with
si ∈ [−1, 1], for every i [18]. Since there exists at least
one index i such that x /∈ ∆i, then ‖s‖2

2
≥ 1, and using

(8) and the Rayleigh principle, we obtain the inequality
(9).

Therefore from items i) and ii), we conclude that the
trajectories of (5) converge to the set ∆ in finite time. It
remains to show that the trajectories remain in ∆, i.e., that ∆
is an invariant set. If x(t) ∈ ∆, then V (t) = 0 and V̇ (t) = 0.
If for some t = T the state vector x(T ) leaves some ∆i,
then V̇ (T ) < 0 and V (T ) > 0, which is a contradiction,
since V is nonincreasing along the trajectories of (6). Thus
the trajectories of (6) reach ∆ and remain in this set. From
Proposition 1, this result also holds for the original gradient
system (5).

We need to obtain the bound for convergence time. From (9)
we can write V (t) ≤ V (t0)−λmin(AMAT ) t, thus, the time
tf for r to reach zero does not exceed V0/λmin(AMAT ),
concluding the proof.

IV. SUPPORT VECTOR MACHINES (SVMS)
Given two classes A and B, the problem of finding the best

surface that separates the elements of the given classes can be
solved by means of support vector machines. This is known
as the training phase of the SVM. One of the main features
of SVMs is that training is performed by solving a quadratic
optimization problem with linear constraints, which ensures
the existence of a unique separating surface.

The training of the SVM is performed by means of training
pairs, each pair consisting of one element of one of the classes
and a label, indicating which class the element belongs to. This
type of training is referred to as supervised training. Consider
the following training pairs:

(y1, z1), . . . , (yN , zN ), yi ∈ {−1,+1}, (10)

where the vectors zi belong to the input space and the scalars
yi define the position of the vectors zi in relation to the surface
that separates the classes, i.e., if yi = +1 the vector zi is
located above the separating surface and if yi = −1, this
vector is located below the separating surface. If given a set of
pairs as in (10), a single hyperplane can be chosen such that
for all i, yi = ±1, then the set of points {zi}N

i=1
is said to

be linearly separable. This is known as a binary classification
problem [22].

Let classes A and B, not necessarily linearly separable, be
labeled as yi = +1 is zi ∈ A and yi = −1 if zi ∈ B. The
problem of finding the best hyperplane Π := {u : uT z + c =
0} that separates the elements of classes A and B is modeled
by the following quadratic optimization problem [13]:

minimizeu,e,c

(

1

2
uT u + b

N
∑

i=1

ep
i

)

(11)

subject to yi(u
T zi + c) ≥ 1 − ei,

ei ≥ 0, i = 1, . . . , N,

where b > 0 is a parameter, p is a positive integer, u, zi ∈ R
n

and ei, ∈ R. The quantity yi(u
T zi+c) is defined as the margin

of the input zi with respect to the hyperplane Π, and the slack
variables ei are introduced in order to provide tolerance to
misclassifications. They are necessary because, whenever the
classes are not linearly separable, the optimization problem
(11) without the slack variables would be infeasible. In the
case of linearly separable classes, the slack variables vanish.
The hyperplane Π that solves problem (11) is the so called
soft margin hyperplane, which, roughly speaking, maximizes
the margin [22], [23]. For nonlinear classification, a feature
function φ, that maps the input space into a higher dimensional
space is introduced. In this case, the constraints of problem
(11) become yi(u

T φ(zi) + c) ≥ 1 − ei, i = 1, . . . , N .
The traditional approach is to solve the dual of (11), since

in this case, instead of the function φ, another class of func-
tions, known as kernel functions and defined as K(z, zi) =
φT (z)φ(zi) is used, with the advantage that it is not necessary
to know the feature function φ. The feature function φ is
defined implicitly by the kernel which is assumed to satisfy
the Mercer conditions [13], [22], [23].

Least Squares Support Vector Machines (LS-SVM)

The LS-SVM model is a modification of the original SVM
model (11), in which the inequality constraints are replaced by
equality constraints. The LS-SVM is modeled by the following
constrained optimization problem [15]:

minimizeu,e,c

(

1

2
uT u +

b

2

N
∑

i=1

e2

i

)

(12)

subject to yi(u
T φ(zi) + c) = 1 − ei, i = 1, . . . , N.

The dual problem of (12) is given by the following system
of linear equations, also known as a KKT linear system [15]:

[

0 yT

y Q + b−1 I

] [

c
α

]

=

[

0
1

]

, (13)

where α ∈ R
N is the vector of dual variables, y is the

column vector composed of the labels of the classes, 1 is
a N -dimensional column vector of ones, Q is a symmetric
matrix given by qij = yiyjK(zi, zj) and K is defined by the
kernel K(z, zj) = φT (z)φ(zj), that must satisfy the Mercer
conditions, meaning that the kernel K is positive-definite and
so is matrix Q [15], [22].

Notice that since b > 0, y 6= 0 and Q is symmetric positive-
definite, it follows that the coefficient matrix of the KKT linear
system (13) is nonsingular and, consequently, the solution of
(13) is unique.

In the LS-SVM model, the problem of determining the best
separating surface for classes A and B is reduced to solving
the system of linear equations (13), and since it is in the form
of equation (1), it can be solved using the gradient system (5).
Theorem 1 ensures that the trajectories of the gradient system
(5) converge in finite time to the solution of (13).

Application example: The example is the Iris plants
database, taken from the UCI Repository of Machine Learning
[24], that consists of three classes with 50 elements each.
The first class is linearly separable from the other two, but
the latter are not linearly separable. In the training phase we



used 80 elements from the first and second classes, and the
remaining ones were used for validation by means of the
following discrimination function [15]:

y(z) = sgn

(

N
∑

i=1

αiyiK(z, zi) + c

)

. (14)

In this example the linear system consists of 81 variables
and 81 equations, which implies that the gradient system has
81 differential equations. We used the Gaussian kernel, given
by K(z, zi) = exp(−‖z−zi‖2/σ2), where σ is a scalar. This
kernel is positive definite, and so is the matrix Q. This kernel
is widely used in the SVM literature.

The initial conditions were chosen arbitrarily at the origin.
We used the Gaussian kernel with σ = 1, the LS-SVM
parameter was b = 10 and the learning matrix of (5) was
M = 10 I. Some trajectories are shown in figure 1 and the
use of the discrimination function (14) with the data points
not used in the training showed that classification was done
without errors, illustrating the good generalization capacity of
the LS-SVM and the efficiency of the gradient system (5) for
this application.

Speed of convergence to the solution of the linear system
is proportional to the gain µ = 10 (M = 10I): the larger the
µ, the quicker the convergence. This is shown in Theorem 1,
and the finite time estimate, which is an upper bound estimate
for the time taken by r to become zero is given by tf ≤
N/10λmin(AAT ), where A denotes the coefficient matrix
of system (13).
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Fig. 1. Some trajectories, arbitrarily chosen, of the gradient system (5) for
the Iris example, showing finite time convergence to the unique solution of
the system of linear equations (13).

V. CONCLUDING REMARKS

In the present paper we proposed a dynamical gradient
system to find a solution set of systems of linear equations in
the form Ax = b. We proved finite time convergence to the
solution set by means of a diagonal type Lyapunov function
for the dynamical system, represented in a Persidskii form.

The proposed gradient system was applied to the training
phase of the LS-SVM model, which amounts to solving a

system of linear equations with unique solution. The LS-
SVM model has, in comparison with other SVM models,
the advantage that the dual of the optimization problem that
models the LS-SVM is a system of linear equations in the form
(1). This makes the LS-SVM particularly appropriate for the
approach proposed in the present paper.

The number of parameters in the system of ODEs is small,
consisting only of the learning matrix M, that controls the
transient time, making the implementation of the gradient
system (5) by means of analog integrated circuits simple
and suitable for real time processing. Moreover, the proposed
gradient system can be solved using standard ODE software
and this could be an advantage with respect to other methods
(e.g. for LS-SVM classifiers), when the number of unknowns
is large. In addition, finite time convergence to the solution of
the system linear equations is ensured.
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