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Abstract. Flows with violent free-surface motions occur in several problems in 
hydrodynamics, such as fuel or water sloshing in tanks, waves breaking in ships, offshore 
platforms, harbors and coastal areas. The computation of such highly nonlinear flows is 
challenging since free-surfaces commonly present merging, fragmentation and breaking 
parts, leading to the use of interface capturing Eulerian approaches. In such methods the 
surface between two fluids is captured by the use of a marker function which is transported in 
a flow field. In this work we present a 3D parallel incompressible SUPG/PSPG finite element 
method to cope with free-surface problems within the interface-capturing context. The 
incompressible flow and transport problems are solved in a segregated manner. Turbulence 
effects are modeled with a classical Smagorinsky model. We introduce a Parallel Dynamic 
Deactivation algorithm to solve the marking equation only in a small region around the 
interface. The implementation is targeted to distributed memory systems with cache-based 
processors. The performance of the proposed solution method was tested with the classical 
Dam Break problem. 
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1 INTRODUCTION 
 
Flows with violent free-surface motions occur in many hydrodynamics problems. Sloshing in 
fuel on water tanks, wave breaking in ships, offshore platforms, harbors, coastal areas, green 
water on decks are important examples of such problems [17]. The computation of such 
highly nonlinear free-surface flows is difficult because the position and shape of the free-
surface is not known a priori. Besides, the free-surface may present merging, cusps and 
fragmentation processes which make the Lagrangian methods based on mesh adaptation 
unfeasible [18, 19]. In this work we extend our state-of-art parallel three-dimensional 
unstructured grid incompressible flow solver to cope with such flows, by implementing an 
interface-capturing method, where two fluids (e. g. water and air) are considered a single 



 

effective fluid with varying properties. The interface is captured as a region of sudden change 
in the fluid properties.  
 
The main characteristics of our incompressible flow solver [13, 15, 16] are: semi-discrete 
stabilized finite element formulation; implicit time marching scheme with adaptive time 
stepping control; advanced Inexact Newton solvers; edge-based data structures to save 
memory and improve performance; support to message passing and shared memory parallel 
programming models; large eddy simulation extensions using a simple Smagorinsky model.  
Into this flow solver we introduce Volume-of-Fluid (VOF) extensions to track the evolving 
free-surface [4, 19]. The advection equation for the free-surface marker function is solved by 
an edge-based semi-discrete SUPG finite element formulation with shock-capturing. The 
computational effort to solve the marking function is limited to a narrow band around the 
free-surface by a dynamic-deactivation (DD) scheme [6]. 
 
The remainder of this paper is organized as follows: the first and second sections present the 
incompressible flow and interface-capturing governing equations respectively; the third 
section summarizes the solution procedures employed and the fourth shows the results 
obtained with the proposed scheme. We simulate the dam-break problem, where a water 
column is suddenly released. We compare our results with available experimental and 
numerical results obtained with different methods (finite differences, finite volumes, finite 
elements, smooth particle hydrodynamics) showing that the present scheme is fast, simple and 
accurate. The final remarks and conclusions are summarized in the last section. 

2 INCOMPRESSIBLE FLOW GOVERNING EQUATIONS 
 
Let Ω ⊂ sdn  be the spatial domain, where nsd is the number of space dimensions. Let Γ  
denote the boundary of . We consider the following velocity-pressure formulation of the 
Navier-Stokes equations governing the incompressible flow of two immiscible fluids: 
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where ρ  and  are the density and velocity,  is the body force vector carrying the gravity 
acceleration effect and 

u f
σ  is the stress tensor given as 
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where p is the hydrostatic pressure, I is the identity tensor and  is the deviatoric stress 
tensor 
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and  is the strain rate tensor defined as ( )uε
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In the present work, the turbulence was modeled as a Large Eddy Simulation (LES) method 
by the use of a simple Smagorinsky turbulence model. In this model, the viscosity µ  is 
augmented by an eddy viscosity  which is defined as µSmag
 

( )µ = ∆ ε
2
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where  is a constant and SC ∆  is the element length defined here as the cubic root of the 
element volume. In this work  was set to 0.1. SC
 
 The essential and natural boundary conditions associated with equations (1) and (2) 
can be imposed at different portions of the boundary Γ  and represented by, 
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where Γg  and  are complementary subsets of Γh Γ . 
 
Let us assume following Tezduyar [11] that we have some suitably defined finite-dimensional 
trial solution and test function spaces for velocity and pressure, hSu , , hVu

h
pS  and =h h

p pV S . 

The finite element formulation of equations (1) and (2) using SUPG and PSPG stabilizations 
for incompressible fluid flows can be written as follows: Find   ∈h Suu h hand ∈h

pp S  such 
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 In the above equation the first four integrals on the left hand side represent terms that 
appear in the Galerkin formulation of the problem (1)-(8), while the remaining integral 
expressions represent the additional terms which arise in the stabilized finite element 
formulation. Note that the stabilization terms are evaluated as the sum of element-wise 
integral expressions, where nel is the number of elements in the mesh. The first summation 
corresponds to the SUPG (Streamline Upwind Petrov/Galerkin) term and the second to the 
PSPG (Pressure Stabilization Petrov/Galerkin) term. We have evaluated the SUPG and PSPG 
stabilization parameters according to Tezduyar et al. [12], as follows: 
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 Here uh is the local velocity vector, ν represent the kinematic viscosity and the “element 
length”  is defined to be equal to the diameter of the sphere which is volume-equivalent to 
the element.  

#h

 
In Equation (9), the last summation is the Least Squares Incompressibility Constraint (LSIC) 
term [10], added to prevent oscillations in high Reynolds number flows. The LSIC 
stabilization parameter, following [10] is 
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The discretization of Equation (9) leads us to a nonlinear system of equations to be solved at 
each time step. 

3 INTERFACE-CAPTURING GOVERNING EQUATIONS 
 
In the volume-of-fluid method, also called pseudo-concentration method, the main idea is to 
define a scalar marking function φ( ,tx )  over the computational domain in such a manner that 
its value at a certain point  and instant  indicates the presence or absence of 
fluid. Thus, let us assume the value 1 to regions filled with a fluid A, e.g., water, and the value 
0 to regions filled with a fluid B, e.g., air. The position of the fluid interface will be defined 
by the isovalue contour 

∈Ωx ∈[0 ]ft ,t

φ φc( )=,tx , where [ ]φ ∈c 0 1,  is its critical value defined a priori. The 
value φc=0.5  is usually assumed. Therefore, the function φ( )x  driven by a velocity field u 
can be computed with the following transport equation in conservative form:  
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In the volume-of-fluid (VOF) formulation the fluid density and viscosity, employed in the 
fluid flow solution, are interpolated across the interface as follows: 
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where subscripts 0 and 1 denote the values corresponding to each phase. 
 
The finite element formulation of Equation (12) can be written as follows: Find φφ ∈h hS , 

such that, φ∀ ∈h hw V : 
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where the first two integrals represent the Galerkin formulation of Equation (12), while the 
first element-wise summation represent the SUPG (Streamline Upwind Petrov-Galerkin 
stabilization) and the second summation term is due the CAU (Consistent Approximated 
Upwind) shock capturing term to reduce the interface smearing during its advection. The 
evaluation of τSUPG  and δ  stabilization terms followed the definitions described in [9] and 
[8] respectively. The discretization of Equation (15) leads us to a non-linear, due the shock 
capturing term, ordinary differential equation system. 

4 SOLUTION PROCEDURE 
 
The computational solution kernels consist of a predictor/multicorrector time integration 
scheme as described in [9, 14] for both, incompressible fluid flow and interface transport 
equations. The nonlinearities due to the convective term on the Navier-Stokes equation and 
the shock capturing on the transport equations, are treated by an Inexact Newton-GMRES 
scheme as described in Elias et al. [15]. Moreover, since both physics are discretized in an 
implicit manner, the use of a Proportional-Integral-Derivative (PID) controller based on 
feedback controlling theory allows the time step to be chosen according to the solution error 
(see [5] for further details). Most of the computational effort spent during the solution phase is 
due to the matrix-vector products within the GMRES driver. In this sense, we adopt an edge-
based data structure in order to minimize indirect memory addressing, diminish the floating 
point operation counts (flops) and memory requirements as described in Elias [15, 13]. 
Further computational gains are obtained from data preprocessing performed by the EdgePack 
library – a package to optimize data based on reordering and grouping techniques [20]. All 
computational kernels previously cited are hybrid parallelized covering most of the High 
Performance Computing techniques such as distributed and shared memory systems as well as 
vectorized and pipelined processors [16]. 
 
We introduce here another computational artifact to further improve the overall efficiency of 
the present free-surface solver, the parallel dynamic deactivation (PDD) technique for solving 
the marking function.  This technique is an extension of the dynamic deactivation (DD) 
procedure, which is an algorithm that restricts the computation on regions were high gradients 
are present. It was firstly presented by Lohner in [6] for contaminant transport problems and 
is based on the same partitioned operator idea behind adaptive implicit/explicit methods such 
as that described by Souza et al in [7]. In this paper we have extended these works to deal 
with parallel free surface flows. Since the marking function employed on volume-of-fluid 
methods presents steep gradients, the dynamic deactivation algorithm catches and restricts the 
computations only on regions around the interface. Therefore, most of the computational 
effort that would be necessary to solve the interface transport over the whole domain is 
considerably saved. Moreover, a buffer zone around the interface is built to assure that the 



 

interface is kept within the enabled region in each time step. It is important to emphasize that 
although the computational costs associated to the transport problem are recognizably lesser 
than those spent by the Navier-Stokes solution, a similar approach can be employed to restrict 
the computations only on regions filled by the aimed fluid during the incompressible solution 
phase. The set of active elements initially selected by the DD algorithm is based upon the 
following criteria: 
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where φ∇ e  is the Euclidean norm of the element gradient solution while φ∇

m
 is the 

average norm gradient computed for the whole computational grid. After the initial selection, 
a buffer zone is built by selecting a number of layers, nlayers, with active elements. In this 
work, all computations were carried out with nlayers set to 5. Note that this parameter can be 
set according to the CFL condition in order to assure that interface does not cross the buffer 
zone. In the PDD extension, each processor estimates its own number of finite element 
entities (elements, edges and nodes) enabled for computations. This is illustrated in Figure 1, 
where we show the evolution of the active elements in the solution of the pure advection of a 
circle. If there are no enabled entities in some processor, it becomes idle as shown for 
processors 2-3, 0-3 and 0-1 in Figure 1 respectively. To our knowledge, it is the first use of 
dynamic deactivation technique to treat multiphase flows in parallel. 
 

   
Figure 1 – Parallel dynamic deactivation in the advection of a circle. 

5 TEST PROBLEM 
 
This section aims the discussion of the test problem employed to evaluate the performance 
and robustness of the proposed scheme regarding solution correctness, mass conservation of 
the discretization method and the parallel dynamic deactivation performance. All 
computations were carried out on a SGI Altix 350 system, with 6 nodes (SGI C-bricks), each 
one with 2 Intel Itanium-2 with 1.5 GHz and 4 GB of memory per node; the memory provided 
by each node is shared through the NUMA link summarizing 24 GB of global system 
memory. The system runs Red Hat Linux Advanced Server, Intel Fortran compiler 8.1, and 
SGI Message Passing Toolkit (MPT 1.10.1). No optimizations besides those provided by 
standard compiler flags (-O3) were used. 

5.1 Dam Break Problem  
 
The collapse of a water column is a well known problem, widely employed to validate free-
surface codes based on interface capturing methods, since it has experimental results (see [1, 



 

2] for details) and various numerical results from different methods available (see for instance 
[3]). Furthermore, this problem presents regions with breaking waves and fluid fragmentation. 
This problem consists of a water column initially sustained by a dam which is suddenly 
removed. The water falls under the influence of gravity (g = 9.81 m/s2), acting vertically, and 
flows downward until hitting the opposite wall producing a sloshing effect. The model, as 
shown in Figure 2, is simply a box with dimension 4a × a × 2.4a, where a is a parameter, 
assumed to be equal to 0.146 m, following reference [1]. The water column has dimensions   
a × a × 2a. The unstructured mesh was built with 46,766 nodes, 251,807 tetrahedra and 
306,597 edges. The density of water is ρw=1000 kg/m3 and the dynamic viscosity µw = 0.01 
kg/(m s). The density of the air was assumed to be ρa=1 kg/m3 and the dynamic viscosity µa = 
0.0001 kg/(m s). 
 

 
Figure 2 – Model for the collapse of a water column problem. 
 
The validation results accessed from the position of the water column leading edge plotted 
against the dimensionless time were compared with experimental results as shown in Figure 
3. 
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Figure 3 – Validation of the leading edge position for the dam break problem. 
 
Figure 3 shows that the proposed scheme reached good agreement in predicting the position 
of the water column leading edge, compared to experimental and numerical reference results 



 

[1, 2, 3]. Moreover, from the snapshots shown in Figure 4 (a) and (b) for the simulation 
instants 0.2 and 0.4 sec, we can qualitatively compare the results obtained with our code with 
those presented by Koshizuka et al in [1] for their experiment. 
 

  
Figure 4 – Snapshots for the simulation instant 0.2 and 0.4 seconds compared with the experimental results 
presented by Koshizuka [1]. 
 
In order to estimate how the stabilized formulation for the marking function influences the 
volume conservation, we present in Figure 5 (a) and (b) the percentage of volume preserved 
for the solution scheme employing fixed and adapted time steps with different stabilizations. 
Moreover, we have evaluated the influence of the Eq. (12) discretized in its conservative and 
non-conservative forms. Figure 5 (a) presents the results using a fixed time step of 0.01, 
which comprises a CFL ranging from 0.3 to 16 for this problem. Figure 5 (b) describes the 
volume conservation when using a time step adjusted with a proportional-integral-derivative 
controller (PID for short) [5]. 
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Figure 5 – Volume preservation according to the time step choice and stabilized formulation adopted. 
 
We can see from Figure 5 that the most conservative scheme in all tests was the one using 
only the shock capturing term acting on the transport equation in its conservative form. The 
worst result was obtained by the SUPG and shock capturing stabilizations used 
simultaneously on the transport equation in a non-conservative form.  
 
The parallel dynamic deactivation algorithm behavior can be observed in Figure 6. This figure 
shows the amount of active edges during the simulation for a 2 processors run. We should 
emphasize that, in the PDD algorithm, the amount of any finite element entity (element, edge 
or node) enabled or disabled has a direct relationship with the computational effort employed 



 

to solve the transport equation. Note that the PDD algorithm works enabling and disabling the 
finite element entities as the solution front advances, following the water column leading 
edge. At the beginning of the solution procedure, the whole computational effort is spent only 
on process 0 while process 1 is kept idle. A good load balance is reached only after 0.27 
seconds which is lost afterwards. This result suggests that even without a good parallel load 
balance, the PDD algorithm can be faster due its ability to reduce, considerably, the number 
of equations following the solution regions with high gradients.  
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Figure 6 – Dynamic deactivation of the transport solver - percentage of active edges. 

6 CONCLUSIONS 
 
This work presented an interface-capturing solution based on the volume-of-fluid method in a 
finite element context. The three dimensional and unsteady Navier-Stokes equations were 
discretized with the SUPG/PSPG stabilized finite element formulation while the transport 
problem was treated with the SUPG and the CAU shock capturing stabilization. The 
turbulence effects were considered in a large eddy simulation context by a simple classical 
Smagorinsky model and the time step controlled by a feedback PID strategy. All 
implementation supported hybrid parallelism as well as vectorization and pipelining common 
in HPC systems. The main computational kernels were optimized with an edge-based data 
structure and the computational efforts in the interface-capturing solution were further 
optimized by the use of the parallel dynamic deactivation technique. The results of the dam 
break simulation showed us that the proposed scheme is fast and accurate, with mass losses of 
less than 3% in the dam break problem. Further computational gains can be reached by the 
use of the dynamic deactivation scheme on the Navier-Stokes solution. 
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