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Abhracf 
This paper discusses the problem of subdividing unstructured 
mesh topologies containing hexahedra, prisms, pyramids and 
tetrahedra into a consistent set of only tetrahedra, while 
preserving the overall mesh topology. Eficient algorithms for 
volume rendering, iso-contouring and particle advection exist for 
mesh topologies comprised solely of tetrahedra. General finite- 
element simulations however, consist mainly of hexahedra, and 
possibly prisms, pyramids and tetrahedra. Arbitrary subdivision 
of these mesh topologies into tetrahedra can lead to discontinuous 
behavior across element faces. This will show up as visible 
artifacts in the iso-contouring and volume rendering algorithms, 
and lead to impossible face adjacency graphs for many 
algorithms. We present here; various properties of tetrahedral 
subdivisions, and an algorithm for determining a consistent 
subdivision containing a &nimal set of tetrahedral 

Keywords: tetrahedralization, mesh subdivision, 
rendering, flow visualization, isosurfaces, metrics] 
grids. 

1. Introduction 

volume 
irregular 

A tetrahedron is the most basic of solid primitives. It has several 
attractive features for visualization. It is convex. It is defined by 
four vertices, which can usually be specified in an independent 
order. A function sampled at these four vertices leads to a unique 
linear function throughout tbe tetrahedra. This is a very useful 
property for interpolation and reconstruction. For these reasons, 
many author’s have developed visualization algorithms for 
tetrahedral meshes. Shirley and Tuchman [Shirley90], describe an 
efficient algorithm for volume rendering tetrahedra in, their 
Projected Tetrahedra algorithm. Kenwrlght and Lane 
JKenwright961 describe a technique for efficient particle‘tracing 
through tetrahedral meshes. They split the curvilinear cells in their 
CFD data into five tetrahedra on tbe fly using an odd&en scheme 
on the computational coordinates. Yagel, et. al. [yage196] 
describe a volume rendering technique that calculates slices 
through a finite-element mesh consisting of strictly tetrahedre. 
Several additional authors describe algorithms that work only on 
tetrahedral meshes (e.g., [Cignoni96], lKnight96]). Many 
simulations however, use mesh topologies consisting of primarily 
hexahedra, with occasional prisms, pyramids and tetrahedra. 

The problem of subdividing a finite-element mesh into tetrahedra 
is currently unknown. An inconsistent subdivision will have the 
adjacent face of two, primitives split differently for each primitive. 
This inconsistency emanates as a discontinuity in the underlying 
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data field when using &i-linear interpolation (or many other 
interpolation schemes). This discontinuity is readily visible when 
taking an iso-contour of the data, as illustrated in Figures 1 and 2. 
In Figure 1, a regular mesh is subdivided by splitting each voxel 
into five tetrabedra randomly. Several holes and shading artifacts 
are clearly visible. Figure 2, shows the same data set with a 
consistent subdivision. Similar artifacts or numerical instabilities 
occur using other visualization techniques. An efficient and robust 
algorithm for subdividing irregular meshes into tetrahedra is 
needed in order to allow us to use these visualization algorithms. 

We will first discuss similar work in Section 2. Section 3 of this 
paper will present our labeling scheme for discussing subdivisions 
and present the possible set of subdivisions (without adding points 
or edges) for a hexabedron. This is perhaps the heart of the paper, 
and several interesting observations will be presented. Section 4 
wil1 discuss the possible subdivisions of pyramids and prisms, 
Section 5 will then show some characterization experiments we 
performed to determine what constraints we could impose on a 
subdivision. Section 6, gives an overview of a simple greedy 
algorithm we developed for consistently subdividing meshes into 
tetrahedra. Section 7 presents results on both test data and some 
real data sets. Finally, we conclude with some future research 
directions in Section 8. 

2. Previous Work 
Calculating a 3D tetrabedralization from scattered data points is a 
well know problem, and the, 3D extension to the Delauney 
triangulation algorithm Ipreparata8SJ is the most prevalent 
solution. This technique can be applied to unstructured meshes, by 
simply throwing out the mesh topology. Not only does this 
destroy the local topology of the mesh, but also ignores the 
boundary of the original mesh, leading to representations of data 
outside of the normal problem domain. What is needed is a 
technique that can produce a consistent tetrahedralization while 
preserving the original mesh. This implies that no edges or data 
points can be removed, but only added. Furthermore, any points 
added need to be within the original volume. Techniques to 
constrain the Delauney triangulation do exist, but these are 
usually only applied at the boundary. 

Several authors describe how to decompose a uniform or 
curvilinear mesh into tetrabedra [Garrlty90], lJvlax90], 
[Shirley90], [Kenwright96]. Here, each voxel or hexahedra is 
subdivided into five tetrabedra. An alternating pattern of two 
subdivisions is used to ensure consistency. Max /J&x92] employs 
a subdivision of six tetrahedra per curvilinear cell for a global 
climate simulation to handle non-planar faces in the data. In their 
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flow volumes paper lJvIax93], they also describe a technique for 
generating a complex unstructured mesh with prisms, such that 
the prisms can be consistently subdivided into tetrahedra. For 
curvilinear data sets, care must be taken when the mesh folds back 
upon itself. Here, a simple alternating scheme fails at the merged 
seam when the periodic length of the cells is odd. As can be seen 

Figure 3. Hexahedron’ numbering scheme. 1 I . 
& 

in Section 3, this can easily be fixed by using a subdivision into 
six tetrahedra at the seam. For finite-element meshes, with 
arbitrary topologies, a robust algorithm is needed that can 
consistently subdivide the mesh into tetrahedra. 

If we are only interested in consistency, then a subdivision of a 
hexahedron into 24 tetrahedra would ensure consistency. Here, 
each face is, ,split into four triangles about either the face centroid, 
or the diagonal intersections, and each triangle is then connected 
to the hexahedron’s centroid to construct tetrabedra. Since each 
face produces four tetrahedra, and there are six faces, a total of 24 
tetrahedra are produced. The draw back, of course, is that the 
efficient algorithms ,we are trying to use have a cost proportional 
to the total number of tetrabedra. Our goal therefore is to 
construct a tetrahedralization that is consistent and has as few 

’ tetrabedra as possible. 

3. Possible Hexahedron Subdivisions 
It is only possible to subdivide a hexabedron into either five or six 
tetrahedra without adding additional data points. By adding the 
hexahedron centroid as a data point, we can produce a subdivision 
into 12 tetrahedra, where each face is still split by a single 
diagonal, From here, we can progressively add face centroids, 
splitting a face into four triangles-to produce 14, 16, 18,20,22 or 
24 tetrahedra. Ideally, we would like to be able to subdivide a 
mesh using splittings into either five or six tetrabedra. This avoids 
the large jump to 12, but more importantly,’ avoids the difficulties 
in adding new data points to a mesh.’ This section will examine 
possible splittings of a single hexabedron. ’ 

Consider a single face of a hexahedron. There are two possible 
diagonals along which the face can be split h$o.tetrahedra. We 
can encode the diagonal direction in.a one bit entity, with a zero 
indicating the bottom-left to upper-right diagonal and a one 
indicating the upper-left to lower-right diagonal. For a hexahedron 
therefore, we have a six bit entity that can encode all of the 
diagonal directions. Let’s order the bits (or faces) such th& 
opposing faces have adjacent bits, say {front 1 back 1 left 1 right 1 
bottom 1 top}. Figure 3 shows a hexahedron with eight numbered 
vertices. Our bit assignment is thus5 ‘!” 

IL’.. ,‘(. I ‘. 

Table 1. Diagonal slice labeling 

This table states that the “front” face has a zero bit for the 
diagonal slice fromnode 1 to node 6 and a one bit for the diagonal 
slice from node 2 to node 5.’ The other faces are similarly labeled, 
This six-bit vector leads to 64 possible diagonal sets. Of these 64, 
it can be shown (Table 2) that 46 can easily be subdivided into 
either 5 or 4 tetrahedra. The remaining 18 configurations prcscnt 
problems or are configurations we need to avoid. There arc 
exactly two possible configurations that lead to subdivisions into 
five’ tetrabedra. These are labeled 010101 and 101010, The two 
alternating bit patterns. The remaining 44 “good” configurations 
can be subdivided into 6 tetrahedra (2 prisms each subdivided into 
three tetrabedra). 

Examining all 64 of these cases leads to some interesting insights. 
All of the 18 “bad” cases can actually be converted to a “good” 
case with a single bit change. In fact, eight of these can take n 
single bit change in all but one face, and changing the bit of the 
appropriate face will produce one of the five tctrahedra 
configurations. Four other “bad” cases can take a bit change in 
any of four faces to produce a “good” case, but require three bit 
changes to produce one of the five tetrahedra configurations. 
Finally,iix of the ‘bad’: cases will take a bit change in only two 
of the faces, and require 2 bit changes to produce a five tetrnhcdrn 
cdntig,ttra~on. 

We can also classify the “bad” cases into two distinct classes. 
Twelve’of the cases actually produce two prisms that can be 
subdivided: The problem arises on the interior face, where an 
inconsistent ‘diagonal is chosen for the two prisms. This is 
annotated as “interior” iii Table 2. The remaining 6 bad cases 
have bitrpattems such that opposite faces have diagonals in 
opposife:duections. Alternating directions would thus have a 2-bit 
pattern ,of either’ dl or. .lO’for each of the three sets of opposing 
faces. This leads to.8 possible configurations where the opposing 
faces have different diagonals. Two of these are the valid 
subdivisions into 5 tetrahedra, and the remaining 6 arc 
undividable. These six require the 2 bit changes to product a five 
tetrabkdra,conflguration.~ 

’ 
4. Pyramids and, Prisms 
Of course, many finite-element meshes consist of other solid 
primitives (and even non-solid primitives). An analysis of prisms 
and pyramids was also conducted, and produced similar 
promising results. Pyramids &e especially easy to deal with. They 
have a single quadrilateral face, which can be split about either 
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Figure 4. Simple Prism Labelling 

diagonal to produce two tetrahedra. Thus, a pyramid abutted 
against a hexahedron face, will not impose any additional 
constraints on the system. Note, that the authors are assuming 
triangular faces are not abutted against quadrilateral faces in any 
real finite-element meshes. 

As pointed out in Max, et. a!. !Max93], a prism can be split into 
three tetrahedra There are three quadrilateral faces that need to be 
split, bottom, left and right. If we choose diagonals, such that 
none of the them share a common vertex, then an inconsistent 
state exists, and a valid subdivision does not exist. A similar 
scheme of subdividing about the prism centroid-can be used for 
bad configurations. This would produce eight tetrahedra, rather 
than three, and again, leave us with the additional centroid point 
to manage, Of the eight possible configurations, there are only.. 
two bad cases where the diagonals do not touch. Note, that if two 
diagonals touch, we have a tetrahedra containing the shared 
vertex. Separating this from the prism, yields a pyramid which 
can be split arbitrarily into two tetrahedra. Therefore, we can 
constrain any two faces of a prism and pick-the appropriate 
diagonal for the remaining face. Since two out of eight possible 
configurations (25%) are bad choices, prisms impose perhaps 
more constraints on our system. 

5. Constrained Subdivisions 
Since a substantial number of cases can be subdivided into 5 or 6 
tetrahedra, our next investigation was examining the effect that 
flipping a diagonal on one of the bad cases would have on the 
adjacent hexahedra. Our first question was whether given a 2x2x2 
set of hexahedra, in which al! of the 24 external faces had their 
diagonals constrained, could a consistent subdivision always be 
found. Amazingly, all 16 million possible external face 
assignments led to consistent internal subdivisions. In fact, on 
average each configuration could be subdivided in over 290 

different sets of tetrahedra‘ The twelve unconstrained internal 
faces gives us plenty of freedom in choosing a subdivision. 
Further constraining the systems, we examined a 2x2x1 set of 
hexahedra Here, we have 16 external faces, over 65 thousand 
possible diagonal assignments, and only 4 internal faces whose 
diagonals can be selected for a possible tetrahedralization. Of 
these possible configurations, only 1520 or 2.32% could not be 
subdivided into 5 or 6 tetrahedra. Similarly, we also examined a 
2x1~1 set of hexahedron, having only a single internal face. Of 
the 1024 possible external diagonal settings, 110 or 12% led to 
contigurations that could not be consistently subdivided. 

In a single hexahedra, if five faces are randomly assigned, for 
only sixteen ofthe 192 cases (8.3%), it is impossible to choose the 
diagond! direction on -the remaining face, such that a good 

I configuration results. Additionally, for more than half (100 of 
192) of the cases, either choice oftlre remaining diagonal leads to 
a good subdivision. 

6. A Simple Greedy Algorithm 
Our initial idea was to-mark each-face to be split by the shortest 
diagonal. This provides well shaped tetralredra and ensures 
consistency. We could then use this as a starting point to 
determine a tetrahedralization, changing diagonal choices as 
needed. A further refinement to this would be to associate weights 
with each diagonal, such that those faces that~are really skewed 
would show a strong preference to be split by the shortest 
diagonal. The preceding analysis illustrates that any 2x2x2 set of 
hexahedra do with exterior constraints Can be consistently 
subdivided, so .if we employ a greedy algorithm to assign 
subdivisions, we can always re-coupe in a relatively small area. In 
other-words, a con&uration can not be produced, that can not be 
corrected within a small-localized area. 

Our algorithm performs a depth first traversal of a finite-element 
mesh, starting at a random element. A face adjacency graph is 
needed to perform the traversal. As we march through the mesh, 
we mark those zones that have already been processed. If we 
reach- a point where all of the current zone’s neighbors have 
already been processed, we then take the next active cell on the 
wait list. As we process a cell, we randomly choose a neighbor to 
process next. Hence, we have a random walk through the mesh. 
All other neighboring zones that have not been marked are put on 
the wait list. 

A problem srises if we encounter an area where a consistent 
subdivision can not be achieved without adding centroids. We 
have two possible solutions for handling this. In the first 
alternative, we back up to the zone we just came from and try an 
alternative configuration. In practice, this solves many of the 
problems. Alternatively, we.can pick a good subdivision for the 
zone giving us difficulty and then try to fix any neighbors that are 
subsequently in a- bad configuration state. We choose to 
implement the first approach. 
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Table 2. Possible Hexahedron subdivisions 
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Given an arbitrary mesh, it is not clear if a valid subdivision is 
possible without adding zone or face centroids. This is a problem 
that the Computational Geometry community has not seemed to 
address yet. Ruppert and Seidel [puppert shows that the 
problem of subdividing a single concave polyhedra is NP- 
complete. Our finite-element meshes are certainly concave, but 
the individual elements are typically convex and of small 
dimension. The minimal subdivision of an unstructured mesh is 
still a future area of research. Since it is also unknown whether a 
valid subdivision should exist, we avoid endless alterations by 
stopping the subdivision process after several failed attempts. We 
handle the bad zone by splitting it about its zone centroid, 
producing 12 tetrahedra in these rare cases. 

Storing a valid subdivision of a large mesh would be prohibitively 
expensive. Instead, we simply store with each zone the resulting 
six-bit vector that dictates the needed splitting. This allows for the 
use of algoriduns optimized to handle hexahedra to work 
efficiently, and those that require tetra!redra can quickly and 
easily subdivide the hexahedra (or prisms and pyramids) into the 
needed tetra!redra on the fly. The six-bit vector is actual stored as 
a byte, leaving additional bits to flag zones that need to generate a 
face centroid. This amounts to a fairly insignificant increase in 
storage for most finite-element meshes. 

7. Results 
The real results of this research is more the analysis described in 
Sections 3 through 5. We tested our algorithm first on regularly 
gridded data so that we would have an optima! subdivision to 
compare with. We generated regular grids with several aspect 
ratios, randomly fixed an increasing number of diagonal slices in 
order to impose some constraints, and then applied our algorithm. 
Our algorithm always tries to use one of the subdivisions into five 
tetrahedra first, before attempting any of the prism subdivisions. 
With no constraints, we always produce the expected five 
tetrahedra per cell. The average number of tetra!redra per 
hexahedra over several runs with varying degrees of constraints 
was 5.5 tetrahedra per cell. Therefore, half of the hexahedra were 
split into five tetrahedra and half into six tetrahedra. This amounts 
to a ten percent increase over the optima! solution without 
constraints. We also never encountered a bad case that could not 
be handled by backtracking one zone and trying alternative 
configurations. 

We applied the algorithm to several data sets, summarized in 
Table 3. The shuttle data, is part of the IRIS Explorer distribution, 
as is the blunt fin data. The blunt tin is actually a curvilinear grid, 
so produces trivial results. We also applied it to some sample data 
distributed with AVS (avs.inp, and boxlO.inp). The submarine 
data is courtesy of Lawrence Livermore National Laboratory 
(LLNL). We are still searching for more complex mesh 
topologies. 

The table lists the number of hexahedra, the resulting number of 
tetrahedra, and the time to build the adjacency graph. The time to 
actually perform the subdivision was less than a second on a!1 of 
these data sets, once the adjacency graph was available. A 
theoretical bound on the minima! number of tetrahedra is five per 
hexahedra. Both the bluntfin and the box10 produce this 
minimum, as expected. 

Table 3. Number of tetrahedra generated. 

8. Future Work 
-There is still some work needed in the analysis of the subdivision 
of a single hexahedron. Several possible symmetries can be 
employed to reduce the total set of contigurations. More 
enumeration of which bits will turn good cases into bad cases, and 
visa versa, would also aid ,in the development of more efficient 
a!golit!lms. ( 

There are also several theoretical questions that have arisen as 
part of this investigation. We have already mentioned the question 
of whether a mesh is subdividable without additional data points. 
The subdivision problem can be expressed in terms of graph 
theory. If we start off with the initial adjacency graph of the mesh, 
the goal then is to expand each node into either five or six new 
nodes (for a hexabedron) and refine the connections. Other 
questions-are: Can a mesh be subdivided using strictly a five 
tetra!redra split? What is the optimal (fewest tetrahedra) splitting 
of a mesh? Hopefully, tlris research will stimulate interest in these 
problems. 

Finally, many improvements into the simple algorithm presented 
here are possible. A genetic or simulated annealing algorithm may 
be ideally suited for determiniig a (locally) optima! subdivision. 
Processing the zones in larger blocks may avoid any bad zones 
and ba&tra&ing. Our current algorithm also makes no use of the 
kernels of insight uncovered in Section 3. More intelligent picking 
up the splittings would leverage this information. 
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Figure 1. Iso-contour with a proper Figure 2. ko-contour with an inconsistent 
tetrahedra subdivision. terahedra subdivision. 

Figure 5. Hexahedral mesh of sample IRIS 
Explorer data set (Shuttle). 

Figure 6. Same data as in Figure 5, but with the 
implicit tetrahedralization. 
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