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ABSTRACT

This paper discusses the problem of subdividing meshes containing tetrahedra, pyramids, prisms or hexahedra into a consistent set
of tetrahedra. This problem occurs in computer graphics where meshes with pyramids, prisms or hexahedra must be subdivided into
tetrahedra to use efficient algorithms for volume rendering, iso-contouring and particle advection. Another application is for the
use of some tetrahedral finite element solvers on a non tetrahedral mesh, or even an hybrid mesh. Arbitrary splitting of quadrilateral
faces into two triangles has two major drawbacks: it can lead to discontinuities across element faces, resulting in non conformal
meshes, and the subdivision of some elements into tetrahedra may need to introduce new vertices. The algorithms presented in this
paper split each quadrilateral face of pyramids, prisms and hexahedra in a consistent way that preserves the conformity of the mesh.
Elements are subdivided into tetrahedra without introducing new vertices. The algorithms are fast, generic, robust, and local, i.e.

they do not need any neighboring information.

Keywords: pyramid, prism, hexahedron, tetrahedron, tetrahedralization, subdivision, confor mity.

1. INTRODUCTION

This paper discusses the problem of subdividing meshes con-
taining tetrahedra, pyramids, prisms or hexahedra into a con-
sistent set of tetrahedra, while preserving the overall mesh
conformity. A mesh is conformal if it assumes the continuity
of piecewise linear solutions at interfaces between elements.
It is assumed that the initial mesh of tetrahedra, pyramids,
prisms and hexahedra is conformal. Its subdivision into a
tetrahedral mesh stays conformal if all internal quadrilateral
faces are split the same way for both elements sharing it.

One of the main applications is in finite element method,
when an unstructured tetrahedral solver is used to solve a
problem on an hybrid mesh. Non tetrahedral elements, for
example a skin of prismatic elements, must be subdivided
into tetrahedra [4, 13,17, 18]. Another targeted application
is for two-dimensional space-time finite element schemes,
when a two-dimensional unstructured triangular mesh is ex-
truded in temporal direction in a space-time slab composed
of prismatic elements that must be subdivided into tetrahe-
dra to allow two-dimensional space-time unstructured mesh
adaptation [6,9,15]. This problem is also a major concern in
computer graphic when non tetrahedral mesh must be subdi-

vided into tetrahedra to use efficient algorithms for volume
rendering, iso-contouring and particle advection that exist
for mesh topologies including only tetrahedra [1, 14].

The problem of subdividing non tetrahedral elements can be
decomposed in two steps [1]. The first step is to split all
the quadrilateral faces into triangles in a consistent manner.
The second step is to tetrahedralize each element according
to quadrilateral faces splitting.

Some of the algorithms found in the literature for the first
step [1,4,13,14,17,18] are iterative, all of them need some
neighboring information and some memory to store tempo-
rary data (this is a minor problem). Also, they are tested on
layer of elements, not on generic unstructured mixed tetra-
hedral, pyramidal, prismatic and hexahedral meshes. The
proposed solution is an algorithm which is direct (no itera-
tion), that does not need to construct neighboring informa-
tion, does not need additional memory and is fully generic.

When addressing the second step, the same authors have
to deal with elements that are not tetrahedralizable without
adding a new vertex. Adding new vertices during the ele-
ments subdivision step is a little more complex to implement,
but it also leads to a larger number of elements. It is shown in



this paper that these untetrahedralizable configurations never
arise using the presented algorithms.

Even if there is still research being done and recent pub-
lications about different algorithms that attempt to solve
parts of this problem, the solution of this problem already
exists since a few years but is not widely known! This
solution is direct, it does not need to construct neighbor-
ing information, it does not need additional memory, it is
fully generic and it avoids the introduction of new ver-
tices. In his ““Theése d’habilitation a diriger des recherches”,
Hecht [11] wrote a paragraph about this problem and the so-
lution was given in one sentence which can be translated
as “...it is sufficient, for example, to split all quadrilat-
eral faces by a diagonal that goes through the vertex with
the greatest global number”” This algorithm was coded
in 1986 in the module DTRI 3D of the subroutines library
Modul ef . This software is now publicly available at
http://ww«+rocq.inria.fr/nmodul ef/ and there
is some documentation on the module DTRI 3D in the man-
uals.

This paper gives this solution and proves by construction that
there is always a tetrahedralization without introducing new
vertices. All the subtleties of the algorithms are fully ex-
plained. Section 2 gives the method outline based on quadri-
lateral face splitting according to vertex numbering. Sec-
tions 3,4 and 5 detail the algorithm for a pyramid, a prism
and a hexahedron, respectively. As the proof of the existence
of a tetrahedralization without introducing new vertices is
done by construction, this paper is more or less a technical
note. Some comments on efficient computer implementation
are given in section 6. Limitations of the method are given
in section 7. Section 8 provides two examples to illustrate
results obtained with the method.

2. METHOD OUTLINE

Let a mesh be composed of tetrahedra, pyramids, prisms and
hexahedra. The mesh is supposed to be conformal, i.e., for
any pair of two different elements, they can share 1) noth-
ing, 2) a vertex, 3) an entire edge, 4) an entire (triangular
or quadrilateral) face. For example, a mesh is not confor-
mal when a quadrilateral face of an hexahedron is connected
to two triangular faces of tetrahedra or prisms. If the mesh
is not conformal, the algorithms of this paper will probably
fail. The initial mesh is supposed to be conformal, and the
purpose is to get a conformal mesh only composed of tetra-
hedra.

The method is based on the use of vertex identifiers. In com-
puter graphics, in finite element or volume method, in mesh
generation, each vertex of a mesh has an identifier. Usually,
this identifier is an integer value which is the global number
of the vertex. It can also be a pointer which is the mem-
ory address where the vertex is stored. Whatever the identi-
fier used, two characteristics are mandatory for the proposed
method: first, each vertex must have an unique and constant
identifier; second, the set of vertex identifiers has to be a
totally ordered set, i.e. a relation is lower than is defined
between the identifiers. For any set of vertices, these two
characteristics permit to define the smallest vertex of the set
which is the vertex with the smallest identifier. In the fol-
lowing, the notation V; < V; means that the identifier of

vertex V; is smaller than the identifier of the vertex V. The
notation (V;, V;) < (Vk, Vi) means that the smallest iden-
tifier of the vertices V; and V; is smaller than the smallest
identifier of the vertices V; and V.

Each triangular face of the mesh remains untouched. Each
quadrilateral face of the mesh must be subdivided into two
triangular faces. There are two different ways to subdivide
a quadrilateral face. The method is based on the following
rule:

A quadrilateral face is subdivided into two triangular
faces by the diagonal issuing from the smallest vertex
of the face.

This rule can be applied locally, element by element, and
does not need any information on the neighboring elements.
However, it ensures that two adjacent elements will split their
common quadrilateral face the same way, so long as the ver-
tices have a unique and constant identifier. Let Vi, V2, V3
and V4 be the vertices counterclockwise of a quadrilateral
face. The face will be cut with the diagonal V7 to V3 if
(Vi, V3) < (Va, Vi) or will be cut with the diagonal V>
to V4 if (Va, Va) < (V1, V). Thistest is cheap to compute,
there is no roundoff error and there is always a decision, i.e.
(Va, V3) cannot be equal to (V2, Vi). If the way to split a
quadrilateral face is to use the shortest diagonal [1], then it
is more expensive, subject to roundoff errors and ambiguous
as what to do if the two diagonals have the same length. The
subdivision rule introduced in this paragraph is the kernel
of the paper, nothing being perfect, see section 7 for some
limitations of the method.

Now that quadrilateral faces are split into triangular faces in a
way that ensures conformity across the mesh, elements must
be tetrahedralized according to the triangular faces. The sim-
plest method should be to insert a vertex at each element
center and to build tetrahedra by connecting it to all triangu-
lar faces. But the resulting tetrahedra would be numerous (a
pyramid is split into six tetrahedra, a prism into eight, and
a hexahedron into twelve), would not be particularly well
shaped and there would be new vertices to manage.

The optimal solution should be to subdivide the elements
with the minimum number of tetrahedra, and to avoid adding
new vertices. The problem is that there exists some configu-
rations of faces splitting such that they are not tetrahedraliz-
able, except by adding a vertex. An advantage of the present
quadrilateral face subdivision rule is that those problematic
configurations never arise. This is shown in following sec-
tions. It is possible to tetrahedralize all elements without
adding any new vertex.

A note about local numbering of the vertices of the elements.
If the local numbering used in this paper is not the same to
the one used by the reader, it is easy to understand the outline
of the subdivision algorithms and to rewrite them according
to the local numbering used. Also, if the local numbering of
the vertices differs, a layer of indirection can be added.

3. PYRAMID
It is supposed that the local numbering V1, Va2, V3, V4 and
Vs of the vertices of the pyramid is given by the Fig. 1.

The problem of subdividing a pyramid into tetrahedra is sim-
ple because there are only two possible configurations to
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Figure 1: Local numbering of the vertices V; to V5 of a
pyramid.

analyze with obvious subdivision into tetrahedra. For the
quadrilateral face of the pyramid, either (V1, V3) < (Va, Va)
or (Va,V4) < (V1,V3). These two configurations can be
subdivided into two tetrahedra that are illustrated in Fig. 2
and given in Table 1.

Vi Va 1% Va

Figure 2: The two manners to split the quadrilateral face
of the pyramid and to subdivide the pyramid into two
tetrahedra.

Table 1: The two tetrahedra that subdivide the pyramid in
function of how the quadrilateral face is split.

If Tetrahedra
(V1,V3) < (Va,V4) | AVAVRV3Vs
AVIV3VL Vs
(VZ,V4) < (Vl,Vg) AVLV3 V4 Vs
ALV V1 Vs

4. PRISM

It is supposed that the local numbering Vi, V2, Vi, Vi, Vs
and Vg of the vertices of the prism is given by the Fig. 3.

V4V6

1% V3
Vo

Figure 3: Local numbering of the vertices V; to Vs of a
prism.

Each quadrilateral face of the prism can be split into triangles
in two different manners, giving a total number of eight dif-
ferent configurations to analyze. It is well known that among
these eight configurations, six of them can be subdivided into
three tetrahedra (see Fig. 4) and two of them cannot be sub-
divided into three tetrahedra (see Fig. 5). These two cases

are named Schonhart polyhedra and can have a tetrahedral-
ization only if a Steiner vertex is added in the prism. These
two cases are characterized by the fact that the diagonals of
the three quadrilateral faces do not share any vertex of the
prism. For the six other cases, they are two vertices of the
prism that share two diagonals of the quadrilateral faces.

V4V6 Va Ve Vi
5

V1 V:'s Vl V3 Vl
Vo Vs
Vi V Ve Va Ve Vi Ve
-
Vi Vs Vi Vs Vi Vs
Va Vo Va

Figure 4: The six manners to split the quadrilateral faces
of the prism such that it can be subdivided into three
tetrahedra.

VZVG V4V6

1% Vi W V3

Va Va

Figure 5: The two manners to split the quadrilateral faces
of the prism such that it cannot be subdivided into three
tetrahedra.

Suppose that Vi, i € {1,2,...,6} is the smallest vertex of
the six vertices of the prism. By a rotation of the prism, this
smallest vertex can be located at the lower left corner (see
Fig. 6).

| Ve Vs Vi Vs Vs

w\\/%w\\/ww\\éw

%1 Vo Va Vi V3 \%1

w<</%%<</ww<</w

Vs Va Vs

Figure 6: The six possible rotations of the prism such that
the smallest vertex is located at the lower left corner.

In computer science, there is a common saying that stipu-
lates that many problems can be solve by adding a layer of



indirection. Let V7., Vr,, Vs, Vi,, V15 and Vi4 be the six
vertices of the rotated prism where I, to I are given by Ta-
ble 2.

Table 2: Values of the indirection I; to Ig in function of
the smallest vertex V;.

Smallest | 15, L L I I
i |1 2 3 4 5 6
v, |2 3 1 5 6 4
Vs |3 1 2 6 4 5
Vi |4 6 5 1 3 2
Vs |5 4 6 2 1 3
Vo |6 5 4 3 2 1

Now, considering only the prism numbered Vi, to Vi,.
As Vi, is the smallest vertex of the six vertices of the
prism, it is necessarily the smallest vertex of the adja-
cent quadrilateral face OVz, Vi, Vi, Vi, and of the adjacent
face OV7, Vi, Vi, Vi,. The first adjacent face will be split
with the diagonal V7, to Vi, the second adjacent face will
be split with the diagonal Vz, to Vz,. No matter how the third
quadrilateral face is split into two triangular faces, from V7,
to Vi4 or from Vi, to Vi, the manner that the two adjacent
quadrilateral faces are split ensures that prisms will have a
tetrahedralization into three tetrahedra. See Fig. 7.

Vi, Vig Vi1, 21 Vie Viy 2 Vig
Vi, Vi, Vi, Vi, Vi, Vi,
Ig Ia Ig

Figure 7: Left: The smallest vertex Vi, of the rotated
prism is also the smallest vertex of its two adjacent
quadrilateral faces. Center and right: The two manners to
split into two triangles the remaining quadrilateral face.

Considering again the prism numbered V7, to Vi, there
are only two possible configurations to analyze and to sub-
divide into tetrahedra. Either (V,,Vis) < (Vig, Vi) OF
(Vig, Vig) < (Vi,, Vie). These two configurations can be
subdivided into three tetrahedra that are given in Table 3.

Table 3: The three tetrahedra that subdivide the prism in
function of how the third quadrilateral face is split.

If Tetrahedra

AV VL, Vi Vig
(sz:VIG) < (Vls’vfs) AV11V12V16V15
AVL Vi ViV,

AV Vi, Vig Vg
(Vfa:Vls) < (szavfs) AVI1V15VI3V16
AV Vi ViV,

5. HEXAHEDRON

The subdivision of the hexahedron into five or six tetrahe-
dra is more complex than for the prism, but the underlying
idea is the same. Each of the six quadrilateral faces of the
hexahedron can be split in two manners, giving a total num-
ber of 64 possible configurations. It is listed in [1] that 46
configurations can be subdivided into five or six tetrahedra
and 18 configurations cannot. With the face splitting based
on the vertex of the quadrilateral face with the smallest iden-
tifier, this section will show that these configurations never
arise.

It is supposed that the local numbering V1, Va, Vs, Va, Vs,
Vs, V7 and Vg of the vertices of the hexahedron is given by
the Fig. 8.

Vs Vz
Vs

Vil v

Vil Va

Figure 8: Local numbering of the vertices V; to V3 of an
hexahedron.

Suppose that Vi, ¢ € {1,2,...,8} is the smallest vertex
of the eight vertices. By a rotation of the hexahedron, V;
can be located at the lower front left corner. The rotation is
not unique and, by convention, the vertex V; at bottom front
right corner is the one corresponding to the lowest value of 5
(see Fig. 9).

Vs, Vo Vi, Vs Vs, Vs Vi, Ve
Vs : V3 : Va : Vs :
Vi \va Ve 1)V Vi | Ve Vo | W
il 2 Vol 1 Vsl 2 Vil 1
Va, Vs Vs, Va Vs, Vi Ve, Va
Vs Ve Vs Vs
Ve | vai Ve |vi Vo |lva Vi |lvs
Vsl 1 Vel 2 Vil 3 Vsl 4

Figure 9: The eight rotations of the hexahedron putting
the smallest vertex at the lower front left corner.

This rotation can be coded as an indirection. Let Vi,, Vi,,
Vig, Viu, Vis, Vig, Vi, and Vi, be the eight vertices of the
rotated hexahedron where I; to Is are given by Table 4.

As Vi, is the smallest vertex of the eight vertices of the
hexahedron, it is necessarily the smallest vertex of the ad-
jacent quadrilateral faces OVr, Vi, Vi, Vi, OVr, Vi, Vig Vi
and OVr, Vi, Vi, Vi, . The first adjacent face will be split by
the diagonal Vi, to Vj,, the second adjacent face will be split
by the diagonal V7, to Vi, and the third adjacent face will be
split by the diagonal Vi, to Vi,. See Fig. 10. The three
remaining quadrilateral faces can still be split by either the
two possible diagonals, which leads to eight configurations
to analyze.



Table 4: Values of the indirection I; to Ig in function of
the smallest vertex V;.

Smallsst | L L L L I I L s
Wi 1 2 3 4 5 6 7 8
V2 2 1 5 6 3 4 8 7
Vs 3 2 6 7 4 1 5 8
Va 4 1 2 3 8 5 6 7
Vs 5 1 4 8 6 2 3 7
Ve 6 2 1 5 7 3 4 8
1% 7 3 2 6 8 4 1 5
Vs 8 4 3 7 5 1 2 6

Vis Vi,
‘/15 /‘; V]
V]l 1///// V12

Figure 10: The smallest vertex V;, of the rotated prism is
also the smallest vertex of the its three adjacent quadri-
lateral faces.

These eight configurations can be reduced to four with an-
other tricky rotation. Let the three remaining faces be num-
bered O, = OV, Vi, Vi, Vig, O2 = OV, V1, Vi, Vi, and
O3 = OV, VigVr, Vig. The eight configurations can be
encoded with three bits. The first bit is for face O; and is
equal to one if the diagonal goes through vertex Vr,, i.e.
(Viy, Vi) < (Vis, Vig), zero otherwise. The second bit is
for face O and is equal to one if the diagonal goes through
vertex Vr,, i.e. (Vi,, Vi) < (Vis, Vig), zero otherwise. The
third bit is for face Oz and is equal to one if the diagonal
goes through vertex Vi,, i.e. (Vig, Vi) < (Vig, Vig), Z€r0
otherwise. Summing the number of bit equal to one gives the
number of diagonals that goes through the vertex Vr,.

The other rotation of the hexahedron needed is a topologi-
cal rotation of an angle of 0° (the identity), 120° or 240°
around the axis that goes through vertices Vi, (South pole)
and V7, (North pole). The rotation of 120°, counterclock-
wise around the North pole is shown in Fig. 11. This rotation
can be coded by adding another layer of indirection. It can
also by done with a circular affectation of vertices Vr,, Vi,
and Vr; around vertex Vr, and another circular affectation
of vertices Vi, Vi, and Vi, around vertex Vr, as follows:

temp = I, temp = Is,
I, = I, Ig = Is,
Iy = Iy, Iy = I3,

14 = temp, I3 = temp.

The rotation of 240°, counterclockwise around the North
pole is shown in Fig. 12. It can be performed by adding a
layer of indirection, by applying twice the permutations for
a 120° rotation or by doing the two following circular affec-

Viy Vi, Vi Vi,
| 7 |
V I // I
Ts [ Vi, [
1 e 1 Iy
| 4 |
I / I
Vig o1 Vi, Vig 1w,
//// //
u /
| % Vi, \% Vi,

Figure 11: Topological rotation of 120° around the axis
that goes through vertices V;, and Vr,.

tations of vertices:

temp = I, temp = Is,
I, = I4, Is = 13,
I4 = I5, IS = 18;
Is = temp, Is = temp.
Vig———— AV Vigf———— 2V,
V15 1 7 ‘/12 1
B l 13
Vi, /: -]V, VI5L ,,,,, - Vi
Vi, ¥ Vi, v ¥ Vi,

Figure 12: Topological rotation of 240° around the axis
that goes through vertices vz, and Vr,.

Which rotation to perform? If the number of diagonals that
goes through the vertex Vi, is zero or three, there is no ro-
tation. If the number of diagonals that goes through the ver-
tex Vr, is one, the rotation to perform is the one that puts
this face on the right of the hexahedron. If the number of
diagonals that goes through the vertex V7, is two, the rota-
tion to perform is the one that puts the third one on the right
of the hexahedron. With the bitwise encoding of the three
faces O;, O and Og, the rotation to perform is given by Ta-
ble 5. Remember that a bit to one means that the diagonal
goes through the vertex V7.

Finally, after this rotation of 0°, 120° or 240°, there re-
mains only four configurations to analyze and to subdivide
into tetrahedra.

5.1. First Configuration

There is no diagonal that goes through vertex Vi, and no ro-
tation around the axis that goes through vertices V7, and Vz,
was performed. The six quadrilateral faces of the hexahe-
dron are split into triangles according to Fig. 13.

For this configuration, there exists one subdivision of the
hexahedron into five tetrahedra that is given in Table 6.



Table 6: All possible subdivisions of the hexahedron V;, to Vi, into five or six tetrahedra in function of the number n of
diagonals through the vertex V7, .

n| § ‘ VAN JAD) Ag Ay As AV
0 |851 ‘ AVL VLV, Ve AVLVpVigVie AVL VeV Vi AVLVigVigVi, AV VigVigVi, Nil
11852 | AVL Vi ViV, AVL VLV Ve AVLVEVigVig AVL ViV Vi, AVL ViV Vi, AV, VigVi Vi,
AVLVigVigVis  AVL VLV Vg AV Ve VigVie AVL ViV Vi, AV ViV, Vi, AV, VL Vi Vi
2 | 853 AV11VI5VIG VI-, AVI1VI4VISVI7 AVI1VIs V15VI7 AVI1 V12V13V16 AVI1 V14VI7V13 AV11V17V16V13
AVL VLV, Vi, AVL ViV Ve AV Ve ViV AVL VRV Vie AV Ve VigVie AVL Vi Vi Vi
AV VE VLV, AVLVL ViV, AVL Vi ViV, AV ViV, Vi AV ViV, Vi, AV Ve, Vi Vi,
3 §54 AV11‘62W7V16 A‘/Il‘/I7VISVI5 AVI1V}6 VI7‘/15 AVI1 VI7V12V}3 AVv11 VISV}7VI4 A‘/}1‘/17‘/13‘/}4
AVL VLV Vg AVL VL VLV, AV Vi,V Vi,  AVL ViV, Vi AV Ve, Vi, Vi AV Vi VigVig
Table 5: Angle of the topological rotation around the axis Vi Vi,
that goes through vertices V7, and Vz, in function of the TN
bitwise encoding of the quadrilateral faces O3, Oy and Og. Vi Lo i
Code | Rotation . /11,
000 0°
001 120° Vi &= Vi,
010 240°
011 0° Figure 14: Second configuration with one diagonal that
100 0° goes through vertex V7. and rotated such that it is on the
101 240° right.
110 120°
111 0°
The six quadrilateral faces of the hexahedron are split into
triangles according to Fig. 15.
‘/}8 1/: AN VI7 ‘/18 n 7 VI7
Vig [
I = M V]5 ; v
i b L T
i v,
Vi, =2 Vi, Vi, VT i Vi,

Figure 13: First configuration with no diagonal that goes
through vertex Vr,.

5.2. Second Configuration

There is one diagonal that goes through vertex V7, and the
appropriate rotation puts that face on the right of the hexahe-
dron. The six quadrilateral faces of the hexahedron are split
into triangles according to Fig. 14.

For this configuration, there exists two subdivisions of the
hexahedron into six tetrahedra. These two subdivisions are
given in Table 6.

5.3. Third Configuration

There are two diagonals that go through vertex V7., and the
appropriate rotation puts the face with the diagonal that does
not go through vertex V7, on the right of the hexahedron.

Figure 15: Third configuration with two diagonals that go
through vertex V7, and rotated such that it is not on the
right.

For this configuration, there exists two subdivisions of the
hexahedron into six tetrahedra. These two subdivisions are
given in Table 6.

5.4. Fourth Configuration

There are three diagonals that go through vertex V7, and
no rotation around the axis that goes through vertices Vi,
and V7, was performed. The six quadrilateral faces of the
hexahedron are split according to Fig. 16.

For this configuration, there exists three subdivisions of the
hexahedron into six tetrahedra. These three subdivisions are
given in Table 6.

It is now proved by construction that hexahedra always have



Vi i Vi,
" 7
Vig 4 ‘
[ - /Vi
/R 4
[ ,/
|
V,TI4/ oL ) Vig
Iy -
[ _-7
i,/ _ -~
Vi, K= Vi,

Figure 16: Fourth configuration with three diagonals that
goes through vertex Vi, .

a tetrahedralization in five or six tetrahedra without introduc-
ing new vertices if quadrilateral faces are split according to
the smallest vertex criterion.

6. COMPUTER IMPLEMENTATION

For computer implementation, there are three alternatives.
If the tetrahedral mesh is really needed for further compu-
tations, for each non tetrahedral element, substitute the con-
nectivity of this element by the connectivity of the tetrahedra
obtained with the algorithms of this paper.

The second alternative, if the tetrahedral mesh is not really
needed, is to perform the subdivision algorithms on the fly.
For example, for the prism, five tests are needed to find the
vertex of the prism with the smallest identifier. The rota-
tion is performed using the Table 2 statically stored in com-
puter memory. Three more tests are needed to determine if
(VIZ’VIG) < (V13,V15) or if (V13,VI5) < (sz’Vls)' So,
eight tests are needed and the algorithm returns the vertices
of the three tetrahedra that subdivide the prism.

The third alternative, if the tetrahedral mesh is not really
needed, is to perform all the tests once, for all non tetra-
hedral elements, and to store the results. There are two pos-
sible diagonals along which a quadrilateral face can be split
into triangles. According to Albertelli and Crawfis [1], the
diagonal direction can be encoded in a one bit entity. For
the prism, for example, the first bit is for face OV1 V2 ViVy,
zero indicating that (V1,Vs) < (V2,Va), one otherwise.
The second bit is for face OV, V3 Vs Vs, zero indicating that
(Va,Vs) < (Vs,Vs), one otherwise. The third bit is for
face OV3V1 V4V, zero indicating that (Vs, Vi) < (Vi, Vs),
one otherwise. A total of nine tests are needed to find the
code of a prism. The six configurations of Fig. 4 correspond,
from left to right and from top to bottom, to 001, 010, 011,
100, 101 and 110. The two configurations of Fig. 5 cor-
respond, from left to right, to 000 and 111, configurations
that can not be obtained with the face splitting algorithm of
this paper. This code can be computed once, stored for each
prism. When the tetrahedralization of a prism is needed, re-
trieve the code of this prism and, with a switch on this code,
the three tetrahedra are given by Table 7.

The idea is the same for an hexahedron, the diagonal direc-
tion of the six quadrilateral faces can be encoded with six
bits as done in Albertelli and Crawfis [1]. For each code that
can be obtained with the face splitting algorithm, the subdi-
vision into tetrahedra can be stored. This is long, tedious and
error prone, but once done, it will fly.

Table 7: The three tetrahedra that subdivide a prism in
function of the encoding of the face splitting.

Code Ny AV Az

000 Nil Nil Nil

001 AVIiVaVeVs  AVIVAV3Ve  AViVsVeVa
010 AVIVRVaVs  AViVEVaVe  AVaVsVaVs
011 AVIVL VRV AV VEVEVYe  AVAVEVaVe
100 AViVaVaVe  AVaVaVaVs  AVaVeVaVs
101 AVIVLV3Ve  AViVLVsVs  AVaVaVsVe
110 AVIVV3VY  AVRVEVEVY  AVaVsVeV,
111 Nil Nil Nil

7. LIMITATIONS OF THE METHOD

The proposed method subdivides elements according to
topological considerations. In input, there is one list of five
(pyramid), six (prism) or eight (hexahedron) identifiers. In
output, there will be two (pyramid), three (prism), five or six
(hexahedron) lists of four identifiers. Nowhere the geomet-
ric information on vertices (the z, y, z coordinates) is taken
into account. This has some advantages: no roundoff error,
robustness, simplicity, speed, etc, but has also some limita-
tions.

7.1. Element Orientation

Element orientation is a geometrical property which can be
defined as the sign of a signed volume measure. In numeri-
cal method as in vizualisation, it is preferred that all elements
have the same orientation (all signed volumes are positive).
The algorithms of this paper can lead to badly oriented tetra-
hedra even if the initial non tetrahedral mesh is well oriented,
in particular when quadrilateral faces are concave or highly
skewed or when non tetrahedral elements are concave. In
that situation, we suggest to retrieve the tetrahedral orienta-
tion in a post-processing step. In fact, the mesh is topolog-
ically correct and it can be geometrically optimized by any
unstructured tetrahedral mesh optimizer, the simplest one be-
ing an iterative vertex centering.

7.2. Element Quality

If a non tetrahedral element is skewed, its subdivision into
tetrahedra will probably produce skewed tetrahedra. The
algorithms of this paper for the subdivision of non tetrahe-
dral elements into tetrahedra are not designed to increase the
quality of the mesh. The quality of the resulting tetrahedral
mesh will be as good or as bad as was the initial one.

Geometric information can be taken into account to select a
particular subdivision when several are possible. That arises
only for hexahedra: the algorithm may give two or three pos-
sible subdivisions into tetrahedra. A geometric criterion that
uses the z, y, z coordinates of the vertices to compute the
minimum of the tetrahedral volumes, the minimum of the
tetrahedral shape measures [7], etc, can be used. Neverthe-
less, geometric criterion can never be used to split the quadri-
lateral faces, otherwise all the advantages of the method are
lost.



However, once the non tetrahedral mesh is tetrahedralized in
a topologically conformal way, three-dimensional unstruc-
tured tetrahedral mesh optimizers can be used to improved
the geometric quality of the mesh. See [3,5,7,8,10, 12, 16]
among many others for three-dimensional unstructured tetra-
hedral mesh optimization.

7.3. Vertices not Uniquely Defined

Another limitation is that vertices must have a unique and
constant identifier, otherwise the tetrahedralization is not
necessarily conformal. The most common case where ver-
tices have multiple identifiers is with multiblock grids. At the
interface between two or more blocks, the same vertices with
the same z, y, z coordinates belong to each block. These
vertices can have two or more identifiers, one per block they
belong to. If the method is applied without any change, each
block will be subdivided into a conformal block, but nothing
ensures the conformity at blocks interface. To overcome that
problem, a global list of vertices can be built with only one
occurrence of each one. An indirection table has to be built
from the local identifier of the vertices inside a block to the
corresponding vertices in the global list of unique vertices.

8. RESULTS

This section presents two three-dimensional meshes where
non tetrahedral elements are subdivided into tetrahedra. The
first example is for a layer of prisms, the second one is for a
structured multiblock hexahedral grid.

8.1. Layer of Prisms

For two-dimensional space-time finite elements [9, 15], a
two-dimensional space unstructured triangular mesh (see
Fig. 17 on the top) is extruded into prisms by an height At
in the time direction (see Fig. 17 in the center). This three-
dimensional mesh for two-dimensional space-time finite el-
ements is named a space-time slab. To adapt the mesh on the
top of the space-time slab and to avoid interpolation between
the space-time slabs, prisms are subdivided into tetrahedra
(see Fig. 17 at the bottom). Once done, all the capabilities
of three-dimensional unstructured tetrahedral mesh adapta-
tion and optimization with mesh refinement and coarsening,
diagonal and face swapping and vertex relocation can be ap-
plied [6].

8.2. Structured Multiblock Hexahedral Grid

In this example, a twelve blocks structured hexahedral grid is
subdivided into tetrahedra. See Fig.18. The problem is that
vertices at the boundaries between two blocks are not unique,
they exist in both blocks. As explained in section 7.3, all
blocks are parsed to build a global list of unique vertices and
to build an indirection from the local identifier of the vertices
inside a block to the corresponding vertices in the global list
of unique vertices. Then, the hexahedra can be subdivided
into tetrahedra using vertex identifiers of the global list of
unique vertices.

9. CONCLUSION

This paper presents the problem of subdividing structured
and unstructured, monoblock and multiblock meshes con-
taining tetrahedra, pyramids, prisms and hexahedra into a
consistent set of only tetrahedra, while preserving the over-
all mesh conformity. The proposed algorithm is to split each
quadrilateral faces with a diagonal from the vertex with the
smallest identifier towards the opposite vertex. This is a
purely topological method that ensure that 1) the quadrilat-
eral faces are consistently split in two triangles, 2) it is al-
ways possible to subdivide the non tetrahedral elements into
tetrahedra without introducing new vertices. Inside some
reasonable limitations, this method is direct, fast, generic,
local, i.e. do not need any neighboring information and it is
robust.
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Partial view of the

hexahedral structured multiblock at the symmetry plane around the wing. Bottom: Hexahedra are subdivided into five or six

Figure 18: Top: Twelve blocks for a structured hexahedral grid around the Onera M6 wing. Center:
tetrahedra, each with the algorithm of § 5.



